PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An inequality for imaginary parts of eigenvalues of non-compact operators with Hilbert-Schmidt Hermitian components

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let A be a bounded linear operator in a complex separable Hilbert space, A∗ be its adjoint one and AI := (A − A∗)/(2i). Assuming that AI is a Hilbert-Schmidt operator, we investigate perturbations of the imaginary parts of the eigenvalues of A. Our results are formulated in terms of the “extended” eigenvalue sets in the sense introduced by T. Kato. Besides, we refine the classical Weyl inequality [formula], where λk(A) (k = 1, 2, . . .) are the eigenvalues of A and N2(·) is the Hilbert-Schmidt norm. In addition, we discuss applications of our results to the Jacobi operators.
Słowa kluczowe
Rocznik
Strony
241--248
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
  • Department of Mathematics, Ben Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
Bibliografia
  • [1] P. Aiena, S. Triolo, Weyl-type theorems on Banach spaces under compact perturbations, Mediterr. J. Math. 15 (2018), no. 3, Article no. 126.
  • [2] R. Bhatia, L. Elsner, The Hoffman–Wielandt inequality in infinite dimensions, Proc. Indian Acad. Sci. (Math. Sci.) 104 (1994), no. 3, 483–494.
  • [3] V.S. Budyka, M.M. Malamud, Deficiency indices and discreteness property of block Jacobi matrices and Dirac operators with point interactions, J. Math. Anal. Appl. 506 (2022), no. 1, Article no. 125582.
  • [4] W. Chaker, A. Jeribi, B. Krichen, Demicompact linear operators, essential spectrum and some perturbation results, Math. Nachr. 288 (2015), no. 13, 1476–1486.
  • [5] W. Geng, K. Tao, Large deviation theorems for Dirichlet determinants of analytic quasi-periodic Jacobi operators with Brjuno-Rüssmann frequency, Commun. Pure Appl. Anal. 19 (2020), no. 12, 5305–5335.
  • [6] M.I. Gil’, Lower bounds for eigenvalues of Schatten-von Neumann operators, J. Inequal. Pure Appl. Math. 8 (2007), no. 3, Article no. 66.
  • [7] M.I. Gil’, Sums of real parts of eigenvalues of perturbed matrices, J. Math. Inequal. 4 (2010), no. 4, 517–522.
  • [8] M.I. Gil’, Bounds for eigenvalues of Schatten-von Neumann operators via self-commutators, J. Funct. Anal. 267 (2014), no. 9, 3500–3506.
  • [9] M.I. Gil’, A bound for imaginary parts of eigenvalues of Hilbert–Schmidt operators, Funct. Anal. Approx. Comput. 7 (2015), no. 1, 35–38.
  • [10] M.I. Gil’, Inequalities for eigenvalues of compact operators in a Hilbert space, Commun. Contemp. Math. 18 (2016), no. 1, Article no. 1550022.
  • [11] M.I. Gil’, Operator Functions and Operator Equations, World Scientific, New Jersey, 2018.
  • [12] M.I. Gil’, Norm estimates for resolvents of linear operators in a Banach space and spectral variations, Adv. Oper. Theory 4 (2019), no. 1, 113–139.
  • [13] M.I. Gil’, Bounds for absolute values and imaginary parts of matrix eigenvalues via traces, Proyecciones 41 (2022), no. 5, 1229–1237.
  • [14] M.I. Gil’, On matching distance between eigenvalues of unbounded operators, Constr. Math. Anal. 5 (2022), no. 1, 46–53.
  • [15] I.C. Gohberg, M.G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Trans. Mathem. Monographs, vol. 18, Amer. Math. Soc., Providence, R. I., 1969.
  • [16] I.H. Gumus, O. Hirzallah, F. Kittaneh, Eigenvalue localization for complex matrices, Electron. J. Linear Algebra 27 (2014), 892–906.
  • [17] A. Jeribi, Perturbation Theory for Linear Operators. Denseness and Bases with Applications, Springer-Verlag Singapore, 2021.
  • [18] W. Kahan, Spectra of nearly Hermitian matrices, Proc. Amer. Math. Soc. 48 (1975), 11–17.
  • [19] T. Kato, Variation of discrete spectra, Commun. Math. Phys. 111 (1987), 501–504.
  • [20] M. Kian, M. Bakherad, A new estimation for eigenvalues of matrix power functions, Anal. Math. 45 (2019), no. 3, 527–534.
  • [21] M. Malejki, Approximation of eigenvalues of some unbounded self-adjoint discrete Jacobi matrices by eigenvalues of finite submatrices, Opuscula Math. 27 (2007), no. 1, 37–49.
  • [22] M. Malejki, Approximation and asymptotics of eigenvalues of unbounded self-adjoint Jacobi matrices acting in l2 by the use of finite submatrices, Cent. Eur. J. Math. 8 (2010), 114–128.
  • [23] O. Rojo, Inequalities involving the mean and the standard deviation of nonnegative real numbers, J. Inequal. Appl. (2006), Article no. 43465, 1–15.
  • [24] O. Rojo, R.L. Soto, H. Rojo, New eigenvalue estimates for complex matrices, Comput. Math. Appl. 25 (1993), no. 3, 91–97.
  • [25] M.L. Sahari, A.K. Taha, L. Randriamihamison, A note on the spectrum of diagonal perturbation of weighted shift operator, Matematiche (Catania) 74 (2019), no. 1, 35–47.
  • [26] M. Webb, S. Olver, Spectra of Jacobi operators via connection coefficient matrices, Comm. Math. Phys. 382 (2021), no. 2, 657–707.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-96dedf9f-8c35-477e-bf3f-21bcf140537b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.