PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study and Characterization of Biofoam From Bagasse (Saccharum officinarum L.) with Chitosan Addition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The increase in styrofoam waste can cause environmental pollution, therefore efforts are required to reduce the use of styrofoam. One of them is by replacing it with biofoam made from agricultural industry waste such as bagasse because if this garbage is not used, it may cause environmental issues. Bagasse has a potential to be utilized as biofoam. This research aims to extract cellulose from bagasse through delignification and bleaching processes, as well as synthesize and characterize biofoam using cellulose from bagasse with the addition of chitosan variations of 2, 3.5, 5, and 6.5 g. The stages of this research are the extraction of cellulose from bagasse waste with FTIR and XRD analysis, making biofoam and biofoam characterization tests. The results of cellulose extraction from bagasse are O-H, C-H and C-O functional groups that indicate the presence of cellulose. In XRD analysis, the cellulose sample has a crystallinity index of 70.74%. Biofoam based on sugarcane bagasse cellulose with the addition of 2 g chitosan has the best characterization, which has a density of 1.23 g/mL, with a water absorption value of 46.03% at 24 hours immersion and biodegradability of 20.68% for 28 days.
Słowa kluczowe
Twórcy
  • Environmental Management Study Program of Graduate School, Hasanuddin University, Makassar, Indonesia
autor
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia
  • Department of Biology, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia
Bibliografia
  • 1. Abdel-Halim, E.S. 2014. Chemical modification of cellulose extracted from sugarcane bagasse: Preparation of hydroxyethyl cellulose. Arabian Journal of Chemistry. 7(3), 362–371.
  • 2. Akopova, T.A., Demina, T.S., Khavpachev, M.A., Popyrina, T.N., Grachev, A.V., Ivanov, P.L., Zelenetskii, A.N. 2021. Hydrophobic modification of chitosan via reactive solvent-free extrusion. Polymers. 13(16), 1–13.
  • 3. Abraham, E., Deepa, B., Pothen, L.A., Cintil, J., Thomas, S., John, M.J., Anandjiwala, R., Narine, S. S. 2013. Environmental friendly method for the extraction of coir fibre and isolation of nanofibre. Carbohydrate Polymers, 92(2), 1477–1483.
  • 4. Alexander, I., Sodri, A., Mizuno, K. 2023. The effect of different natural waxes to hydrophobic properties of starch-based biodegradable foams. Journal of Environmental Science and Sustainable Development, 6(1), 86–101.
  • 5. Cahyani, A.L., Linda, V., Guntama, D., Dewi, M.N., Hakim, L. 2023. Effect of chitosan variation in starch and cellulose based biofoam. Advance Sustainable Science Engineering and Technology, 5(3), 0230306.
  • 6. Darni, Y., Anandati, G.M., Mayanti, E., Lismeri, L., Utami, H., Azhar, A. 2023. Synthesis of biofoam based on starch mixture of cassava peel and kepok banana peel with chitosan additive to improve mechanical and physical characteristics. Jurnal Rekayasa Kimia & Lingkungan, 18(1), 37–44.
  • 7. Deepa, B., Abraham, E., Cherian, B.M., Bismarck, A., Blaker, J.J., Pothan, L.A., Leao, A.L., de Souza, S.F., Kottaisamy, M. 2011. Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresource Technology, 102(2), 1988–1997.
  • 8. Evans, S.K., Wesley, O.N., Nathan, O., Moloto, M.J. 2019. Chemically purified cellulose and its nanocrystals from sugarcane baggase: isolation and characterization. Heliyon, 5(10), 1–7.
  • 9. Fikri, E., Veronica, A. 2018. Effectiveness of carbon monoxide concentration reduction on active carbon contact system in burning polystyrene foam. Journal of Ecological Engineering, 19(4), 1–6.
  • 10. Fatrozi, S., Purwanti, L., Sari, S.K., Ariesta, M.N., Kusumaningsih, T., Marliyana, S.D., 2020. Starchbased biofoams reinforced with microcrystalline cellulose from banana stem: Hydrophobicity and biodegradability. IOP Conference Series: Materials Science and Engineering, 858(1), 1–6.
  • 11. Fauziyah, B., Yuwono, M., Isnaeni., Nahdhia, N., Sholihah, F. 2022. Isolation and characterization of sugarcane (Saccharum officinarum L.) bagasse cellulose hydrolyzed with acid variation. Tropical Journal of Natural Product Research, 6(6), 856–862.
  • 12. Hajiha, H., Sain, M. 2015. The use of sugarcane bagasse fibres as reinforcements in composites. biofiber reinforcements in composites. Materials Science, Engineering, 525–549.
  • 13. Hisbiyah, A.Y., Fadhilah, L.N., Hidayah, R. 2021. Antibacterial activity of sugarcane bagasse nanocellulose biocomposite with chitosan against Escherichia coli. Jurnal Kimia Valensi. 7(1), 28–37.
  • 14. Hasan, H.R., Sauodi M.H. 2014. Novel method for extraction of cellulose from agricultural and industrial wastes. Chemical Technology: An Indian Journal, 9, 148–153.
  • 15. Indarti, E., Muliani, S., Wulya, S., Rafiqah, R., Sulaiman, I., Yunita, D. 2021. Development of environmental-friendly biofoam cup made from sugarcane bagasse and coconut fiber. IOP Conference Series: Earth and Environmental Science, 711(1), 1–8.
  • 16. Ismawati, Y., Septiono, M.A., Proboretno, N., Karisson, Therese, Buonsante., Vito. 2022. Plastic waste management and burden in Indonesia. International Pollutants Elimination Network (IPEN): Indonesia.
  • 17. Indarti, E., Muliani, S., Yunita, D. 2023. Characteristics of biofoam cups made from sugarcane bagasse with Rhizopus oligosporus as binding agent. Advances in Polymer Technology. 2023, 1–12.
  • 18. Johar, N., Ahmad, I., Dufresne, A. 2012. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products. 37(1), 93–99.
  • 19. Kim, H.W., Jo, J.H., Kim, Y.B., Le, T.K., Cho, C.W., Yun, C.H., Chi, W.S., Yeom, S.J. 2021. Biodegradation of polystyrene by bacteria from the soil in common environments. Journal of Hazardous Materials, 416, 1–9.
  • 20. Karp, S.G., Woiciechowski, A.L., Soccol, V.T., Soccol, C.R. 2013. Pretreatment strategies for delignification of sugarcane bagasse: A review. Arch. Biol. Technol. V. 56, 679–689.
  • 21. Klemm, D., Heublein, B., Fink, H. P., Bohn, A. 2005. Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie - International Edition. 44(22), 3358–3393.
  • 22. Liao, J., Pengcheng L., Yuxiang Z., Li C., Luyao H., Lihuan M., Jun L., Qingang X. 2022. A lightweight, biodegradable, and recyclable cellulosebased bio-foam with good mechanical strength and water stability. Journal of Environmental Chemical Engineering. 10, 1–10.
  • 23. Liu, R., Yu, Hui., Huang, Y. 2005. Structure and morphology of cellulose in wheat straw. Cellulose, 12, 25–34.
  • 24. Mahmud, M.A., Anannya, F.R. 2021. Sugarcane bagasse - a source of cellulosic fiber for diverse applications. Heliyon. 7(8), 1–14.
  • 25. Mzimela, Z.N.T., Linganiso, L.Z., Revaprasadu, N., Motaung, T.E. 2020. Comparison of cellulose extraction from sugarcane bagasse through alkali. Materials Research. 21(6), 1–7.
  • 26. Mandal, A., Chakrabarty, D. 2011. Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydrate Polymers, 86(3), 1291–1299.
  • 27. Mathias, J.D., Tessier-Doyen, N., Michaud, P. 2011. Development of a chitosan-based biofoam: Application to the processing of a porous ceramic material. International Journal of Molecular Sciences. 12(2), 1175–1186.
  • 28. Majib, N.M., Ting, S.S., Yaacob, N.D., Rohaizad, N.M., Zulkepli, N.N., 2023. Mechanical and morphological properties of biofoam using sawdust and teak leaves as substrates. Malaysian Journal of Microscopy, 19(1), 142–150.
  • 29. Osuna-Laveaga, D.R., García-Depraect, O., Vallejo-Rodríguez, R., López-López, A., León-Becerril, E. 2020. Integrated ozonation-enzymatic hydrolysis pretreatment of sugarcane bagasse: Enhancement of sugars released to expended ozone ratio. Processes, 6(10), 1–18.
  • 30. Obradovic, J., Voutilainen, M., Virtanen, P., Lassila, L., Fardim, P. 2017. Cellulose fibre-reinforced biofoam for structural applications. Materials, 10(6), 1–10.
  • 31. Perwitasari, H., Mulyo, J.H., Sugiyarto, S., Widada, A.W., Siregar, A.P., Fadhliani, Z., 2021. Economic Impact of Sugarcane in Inodonesia: an Input-Output Approach. Agro Ekonomi. 32(1), 1–11.
  • 32. Prieto-García, F., Jiménez-Muñoz, E., Acevedo-Sandoval, O.A., Rodríguez-Laguna, R., Canales-Flores, R.A., Prieto-Méndez, J. 2019. Obtaining and optimization of cellulose pulp from leaves of Agave tequilana Weber Var. Blue. preparation of handmade craft paper. Waste and Biomass Valorization. 2379–2395.
  • 33. Pan, Y., Zhou, Y., Du, X., Xu, W., Lu, Y., Wang, F., Jiang, M. 2023. Preparation of Bio-Foam material from steam-exploded corn straw by in situ esterification modification. Polymers. 15(9), 1–13.
  • 34. Rizal, W.A., Maryana, R., Prasetyo, D.J., Suwanto, A., Wahono, S.K. 2020. Alkaline pretreatment of sugarcane bagasse on pilot scale reactor. IOP Conference Series: Earth and Environmental Science. 462 (1), 1–6.
  • 35. Rincon-Fuentes, L., Moreno-Bastidas, L., MedinaVargas, O. 2022. Selective extraction and modification of cellulose from sugar cane bagasse (Saccharum officinarum). Universitas Scientiarum. 27(3), 254–272.
  • 36. Setyowati, E. 2014. Eco-building material of styrofoam waste and sugar industry fly-ash based on nano-technology. Procedia Environmental Sciences, 20, 245–253.
  • 37. Sumardiono, S., Pudjihastuti, I., Amalia, R., Yudanto, Y. A. 2021. Characteristics of Biodegradable Foam (Bio-foam) Made from Cassava Flour and Corn Fiber. IOP Conference Series: Materials Science and Engineering, 1053(1), 012082.
  • 38. Sari, G.F. 2022. The effect of proportion of ganyong starch and waste of straw rice on biodegradable foam production as sustainable packaging. IOP Conference Series: Earth and Environmental Science. 1041(1), 1–9.
  • 39. Sheltami, R.M., Abdullah, I., Ahmad, I., Dufresne, A., Kargarzadeh, H. 2012. Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydrate Polymers. 88(2), 772–779.
  • 40. Szymańska-Chargot, M., Chylińska, M., Pertile, G., Pieczywek, P.M., Cieślak, K.J., Zdunek, A., Frąc, M. 2019. Influence of chitosan addition on the mechanical and antibacterial properties of carrot cellulose nanofibre film. Cellulose, 26(18), 9613–9629.
  • 41. Sainorudin, M.H., Mohammad, M., Kadir, N.H.A., Abdullah, N.A., Yaakob, Z. 2018. Characterization of several microcrystalline cellulose (Mcc)-based agricultural wastes via x-ray diffraction method. Solid State Phenomena. 280, 340–345.
  • 42. Soundarrajan, C., Vennison, J.S., Saraswathi, K., Emmanuel, C.E.S., 2011. Does chip size of the lignocellulosic bagasse influence lignin degradation with NaOH treatment. Biosciences Biotechnology Research Asia, 8(2), 765–769.
  • 43. Sanhawong, W., Banhalee, P., Boonsang, S., Kaewpirom, S. 2017. Effect of concentrated natural rubber latex on the properties and degradation behavior of cotton-fiber-reinforced cassava starch biofoam. Industrial Crops and Products, 108, 756–766.
  • 44. Soykeabkaew, N., Thanomsilp, C., Suwantong, O. 2015. A review: Starch-based composite foams. Composites Part A: Applied Science and Manufacturing, 78, 246–263.
  • 45. Sirviö, J., Honka, A., Liimatainen, H., Niinimäki, J., Hormi, O. 2011. Synthesis of highly cationic water-soluble cellulose derivative and its potential as novel biopolymeric flocculation agent. Carbohydrate Polymers, 86(1), 266–270.
  • 46. Thomas, L.H., Trevor, F.V., Šturcová, A., Kennedy, C.J., May, R.P., Altaner, C.M., Apperley, D.C., Wess, T.J., Jarvis, M.C. 2013. Structure of cellulose microfibrils in primary cell walls from collenchyma. Plant Physiology, 161(1), 465–476.
  • 47. Tibolla, H., Pelissari, F.M., Menegalli, F.C. 2014. Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. LWT. 59(2P2), 1311–1318.
  • 48. Verma, R., Vinoda, K.S., Papireddy, M., Gowda, A.N.S., 2016. Toxic pollutants from plastic waste- A Review. Procedia Environmental Sciences. 35, 701–708.
  • 49. Wulan, S., Rukmana, D., Sjahrul, M. 2020. Utilization of solid waste from refined sugar industry (filter cake) as biodegradable foam (biofoam). IOP Conference Series: Earth and Environmental Science. 473(1), 1–9.
  • 50. Wani, A.K., Rahayu, F., Fauziah, L., Suhara, C. 2023. Advances in safe processing of sugarcane and bagasse for the generation of biofuels and bioactive compounds. Journal of Agriculture and Food Research. 12, 1–12.
  • 51. Watkins, D., Nuruddin, M., Hosur, M., Tcherbi-N, A., Jeelani, S. 2015. Extraction and characterization of lignin from different biomass resources. Journal of Materials Research and Technology, 4(1), 26–32.
  • 52. Yanto, D.H.Y., Krishanti, N.P.R.A., Ardiati, F.C., Anita, S.H., Nugraha, I.K., Sari, F.P., Laksana, R.P.B., Sapardi, S., Watanabe, T. 2019. Biodegradation of styrofoam waste by ligninolytic fungi and bacteria. IOP Conference Series: Earth and Environmental Science. 308(1), 1–10.
  • 53. Yao, Z., Seong, H.J., Jang, Y.S., 2022. Environmental toxicity and decomposition of polyethylene. Ecotoxicology and Environmental Safety. 242, 1–16.
  • 54. Yunita, D., Indarti, E., Rafiqah, R., Darurrachmi, D., Lahmer, R.A. 2023. Physical, thermal and functional groups' characteristics of biofoam cup made from coconut fibre waste, soy flour and Rhizopus oligosporus. IOP Conference Series: Earth and Environmental Science. 1183(1), 1–7.
  • 55. Zhou, H., Wu, C., Onwudili, Jude A., Meng, A., Zhang, Y., Williams, Paul T. 2016. Influence of process conditions on the formation of 2–4 ring polycyclic aromatic hydrocarbons from the pyrolysis of polyvinyl chloride. Fuel Processing Technology, 144, 299–304.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-96dd47bc-2bb0-4d59-8248-4d86bb82e0d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.