PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Immobilization of permeabilized cells of baker’s yeast for decomposition of H2O2 by catalase

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Permeabilization is one of the effective tools, used to increase the accessibility of intracellular enzymes. Immobilization is one of the best approaches to reuse the enzyme. Present investigation use both techniques to obtain a biocatalyst with high catalase activity. At the beginning the isopropyl alcohol was used to permeabilize cells of baker’s yeast in order to maximize the catalase activity within the treated cells. Afterwards the permeabilized cells were immobilized in calcium alginate beads and this biocatalyst was used for the degradation of hydrogen peroxide to oxygen and water. The optimal sodium alginate concentration and cell mass concentration for immobilization process were determined. The temperature and pH for maximum decomposition of hydrogen peroxide were assigned and are 20°C and 7 respectively. Prepared biocatalyst allowed 3.35-times faster decomposition as compared to alginate beads with non permeabilized cells. The immobilized biocatalyst lost ca. 30% activity after ten cycles of repeated use in batch operations. Each cycles duration was 10 minutes. Permeabilization and subsequent immobilization of the yeast cells allowed them to be transformed into biocatalysts with an enhanced catalase activity, which can be successfully used to decompose hydrogen peroxide.
Rocznik
Strony
59--63
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • University and Technology of Life Science Bydgoszcz
Bibliografia
  • 1. Pscheidt, B. & Glieder, A. (2008). Yeast cell factories for fine chemical and API production. Microb. Cell Fact. 7(1), 25. DOI: 10.1186/1475-2859-7-25.
  • 2. Pratap, U.R., Jawale, D.V., Londhe, B.S. & Mane, R.A. (2011). Baker’s yeast catalyzed synthesis of 1,4- benzothiazines, performed under ultrasonication. J. Mol. Catal. B- Enzym. 68(1), 94–97. DOI: 10.1016/j.molcatb.2010.09.018.
  • 3. Hounga, J.Y. & Liau, J.S. (2006). Mathematical modeling of asymmetric reduction of ethyl 4-chloro acetoacetate by bakers’ yeast. Enzyme Microb. Tech. 38(7), 879–886. DOI: 10.1016/j.enzmictec.2005.02.028.
  • 4. Fow, K.L., Poon, L.C.H., Sim, S.T., Chuah, G.K. & Jaenicke, S. (2008). Enhanced asymmetric reduction of ethyl 3-oxobutyrate by baker’s yeast via substrate feeding and enzyme inhibition. Eng. Life Sci. 8(4), 372–380. DOI: 10.1002/elsc.200700052.
  • 5. Yu, M.A., Hou, Y., Gong, G.H., Zhao, Q., Zhu, X.B., Jiang, L., Yang, X.L. & Liao, F. (2009). Effects of industrial storage on the bioreduction capa city of brewer’s yeast. J. Ind. Microbiol. Biot. 36(1), 157–162. DOI: 10.1007/s10295-008-0483-x.
  • 6. FAO. (2018). World food and agriculture – statistical pocketbook 2018. Rome. 254 pp. Licence: CC BY-NC-SA 3.0 IGO.
  • 7. Miranda, R.C., Souza, C.S., Gomes, E.B., Lovaglio, R.B., Lopes, C.E. & Sousa, M.F. (2007). Biodegradation of diesel oil by yeasts isolated from the vicinity of Suape Port in the State of Pernambuco – Brazil. Braz. Arch. Biol. Technol. 50(1), 147–152. DOI: 10.1590/S1516-89132007000100018.
  • 8. Karimi, M., Hassanshahian, M., Karimi, M. & Hassanshahian, M. (2016). Isolation and characterization of phenol degrading yeasts from wastewater in the coking plant of Za-rand, Kerman. Braz. J. Microbiol. 47(1), 18–24. DOI: 10.1016/j.bjm.2015.11.032.
  • 9. Kaushal, J., Mehandia, S., Singh, G., Raina, A. & Arya, S.K. (2018). Catalase enzyme: application in bioremediation and food industry. Biocatal. Agric. Biotechnol. 16, 192–199. DOI: 10.1016/j.bcab.2018.07.035.
  • 10. Venkateshwaran, G., Somashekar, D., Prakash, M.H., Agrawal, R., Basappa, S.C. & Joseph R. (1999). Production and utilization of catalase using Saccharomyces cerevisiae. Process Biochem. 34(2), 187–191. DOI: 10.1016/S0032-9592(98)00087-9.
  • 11. Raducan, A., Cantemir, A.R., Puiu, M. & Oancea, D. (2012). Kinetics of hydrogen peroxide decomposition by catalase: hydroxylic solvent effects. Bioproc. Biosyst. Eng. 35(9), 1523–1530. DOI: 10.1007/s00449-012-0742-0.
  • 12. Presecki, A.V. & Vasić–Racki, D. (2005). Production of L–malic acid by permeabilized cells of commercial Saccharomyces sp. Strains. Biotechnol. Lett. 27(23–24), 1835–1839. DOI: 10.1007/s10529-005-3890-3.
  • 13. Yu, M.A., Wei, Y.M., Zhao, L., Jiang, L., Zhu, X.B. & Qi, W. (2007). Bioconversion of ethyl 4-chloro-3-oxobutanoate by permeabilized fresh brewer’s yeast cells in the presence of allyl bromide. J. Ind. Microbiol. Biot. 34(2), 151–156. DOI: 10.1007/s10295-006-0179-z.
  • 14. Panesar, P.S., Panesar, R., Singh, R.S. & Bera, M.B. (2007). Permeabilization of yeast yells with organic solvents for β–galactosidase activity. Res. J. Microbiol. 2(1), 34–41. DOI: 10.3923/jm.2007.34.41.
  • 15. Abraham, J. & Bhat, S.G. (2009). Permeabilization of baker’s yeast with N–lauroyl sarcosine. J. Ind. Microbiol. Biotechnol. 35(8), 799–804. DOI: 10.1007/s10295-008-0350-9.
  • 16. Sekhar, S., Bhat, N. & Bhat, S.G. (1999). Preparation of detergent permeabilized Bakers’ yeast whole cell catalase. Proc. Biochem. 34(4), 349–354. DOI: 10.1016/S0032-9592(98)00105-8.
  • 17. Trawczynska, I. & Wojcik, M. (2014). Application of Response Surface Methodology for optimization of permeabilization process of baker’s yeast, Pol. J. Chem. Technol. 16(2), 31–35. DOI: 10.2478/pjct-2014-0026.
  • 18. Trawczynska, I. (2015). Research and modeling of the yeast cells permeabilization process using selected alcohols. Published doctoral dissertation. West Pomeranian University of Technology Szczecin.
  • 19. Beers, R.F. & Sizer, I.W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195(1), 133–140.
  • 20. Chance, B. (1950). The reactions of catalase in the presence of the notatin system. Biochem. J. 46(4), 387–402.
  • 21. Idris, A. & Suzana, W. (2006). Effect of sodium alginate concentration, bead diameter, initial pH and temperature on lactic acid production from pineapple waste using immobilized Lactobacillus delbrueckii. Process Biochem. 41(4), 1117–1123. DOI: 10.1016/j.procbio.2005.12.002.
  • 22. Liouni, M., Drichoutis, P. & Nerantzis, E.T. (2007). Studies of the mechanical properties and the fermentation behavior of double layer alginate–chitosan beads, using Saccharomyces cerevisiae entrapped cells. World J. Microb. Biot. 24(2), 281–288. DOI: 10.1007/s11274-007-9467-7.
  • 23. Gokgoz, M. & Yigitoglu, M. (2011). Immobilization of Saccharomyces Cerevisiae on to modified carboxymethylcellulose for production of ethanol. Bioproc. Biosyst. Eng. 34(7), 849–857. DOI: 10.1007/s00449-011-0535-x.
  • 24. Suenaga, T., Aoyagi, R., Sakamoto, N., Riya, S., Ohashi H., Hosomi M., Tokuyama, H. & Terada, A. (2018). Immobilization of Azospira sp. strain I13 by gel entrapment for mitigation of N2O from biological wastewater treatment plants: Biokinetic characterization and modelling. J. Biosci. Bioeng. 126(2), 213–219. DOI: 10.1016/j.jbiosc.2018.02.014.
  • 25. Lee, K.H., Choi, I.S., Kim, Y.G., Yang, D.J. & Bae, H.J. (2011). Enhanced production of bioethanol and ultrastructural characteristics of reused Saccharomyces cerevisiae immobilized calcium alginate beads. Bioresource Technol. 102(17), 8191–8198. DOI: 10.1016/j.biortech.2011.06.063.
  • 26. Suzuki, T., Yamaguchi, T. & Ishida, M. (1998). Immobilization of Prototheca zopfii in calcium alginate beads for the degradation of hydrocarbons. Process Biochem. 33(5), 541–546. DOI: 10.1016/S0032-9592(98)00022-3.
  • 27. Taylor, A., Molzahn, P., Bushnell, T., Bushnell, T., Cheney, C., LaJeunesse, M., Azizian, M. & Semprini, L. (2018). Immobilization of Methylosinus trichosporium OB3b for methanol production. J. Ind. Microbiol. Biotechnol. 45(3), 201–211. DOI: 10.1007/s10295-018-2010-z.
  • 28. Elibol, M. & Moreira A.R. (2003). Production of extracellular alkaline protease by immobilization of the marine bacterium Teredinibacter turnirae. Process Biochem. 38(10), 1445–50. DOI: 10.1016/S0032-9592(03)00024-4.
  • 29. Carvalho, W., Silva, S.S., Converti, A., Vitolo, M., Felipe, M.G.A., Roberto, I.C., Silva, M.B. & Manchilha, I.M. (2002). Used of immobilized Candida yeast cells for xylitol production from sugarcane bagasse hydrolysate. Appl. Biochem. Biotech. 98(1–9), 489–496. DOI: 10.1385/ABAB:98-100:1-9:489.
  • 30. Duarte, J.C., Rodrigues, J.A., Moran, P.J., Valença, G.P. & Nunhez, J. R. (2013). Effect of immobilized cells in calcium alginate beads in alcoholic fermentation. AMB Express. 3, 31. DOI: 10.1186/2191-0855-3-31.
  • 31. Kaushal, J., Seema, Singh, G. & Arya, S.K. (2018). Immobilization of catalase onto chitosan and chitosan-bentonite complex: A comparative study. Biotechnol. Rep. 18, 251–258. DOI: 10.1016/j.btre.2018.e00258.
  • 32. Seah, T.C.M. & Kaplan, J.G. (1973). Purification and properties of the catalase of bakers’ yeast. J. Biol. Chem. 248(8), 2889–2893.
  • 33. D’Souza, S.F., Deshpande, A. & Nadkarni, G.B. (1987). Effect of permeabilization on the thermostability of catalase in immobilized yeast cells. Biotechnol. Lett. 9(9), 625–628. DOI: 10.1007/BF01033199.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-96dc0f66-885c-4b38-9339-f85e671992e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.