PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling the performance of an Electrodynamic screen (EDS) with artificial intelligence techniques

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Modelowanie wydajności ekranu elektrodynamicznego (EDS) za pomocą technik sztucznej inteligencji
Języki publikacji
EN
Abstrakty
EN
Artificial neural networks by their learning, classification, and decision capabilities, have contributed in the development of several fields. In electrostatics and its applications, neural networks are used to solve the problems of modeling, diagnosis and control of different modes of operation of machines. This work focuses on the application of artificial neural networks for modeling the operation of a three-phase electric field electrodynamic screen for moving micronized polyvinyl chloride (PVC) particles, with an average particle size of 250 μm. The neural network used is a multilayer perceptron type network, trained by the gradient back propagation algorithm. The input vector contains parameters taken from the studied experimental device: applied voltage U [kV], frequency [Hz] and diameter d [mm]. The output vector contains the mass of the product collected at the output of the electrodynamic screen.
PL
Sztuczne sieci neuronowe dzięki swoim zdolnościom uczenia się, klasyfikacji i podejmowania decyzji przyczyniły się do rozwoju kilku dziedzin. W elektrostatyce i jej zastosowaniach sieci neuronowe są wykorzystywane do rozwiązywania problemów modelowania, diagnozowania i sterowania różnymi trybami pracy maszyn. W pracy skupiono się na zastosowaniu sztucznych sieci neuronowych do modelowania działania ekranu elektrodynamicznego trójfazowego pola elektrycznego dla poruszających się cząstek mikronizowanego polichlorku winylu (PVC) o średniej wielkości cząstek 250 μm. Wykorzystywana sieć neuronowa jest wielowarstwową siecią typu perceptron, wytrenowaną przez algorytm wstecznej propagacji gradientu. Wektor wejściowy zawiera parametry zaczerpnięte z badanego urządzenia doświadczalnego: przyłożone napięcie U [kV], częstotliwość [Hz] i średnicę d [mm]. Wektor wyjściowy zawiera masę produktu zebraną na wyjściu ekranu elektrodynamicznego.
Rocznik
Strony
128--132
Opis fizyczny
Bibliogr. 59 poz., rys., tab., wykr.
Twórcy
  • University Mustapha Stambouli of Mascara, Algeria
autor
  • University Mustapha Stambouli of Mascara, Algeria
  • University Mustapha Stambouli of Mascara, Algeria
  • University Mustapha Stambouli of Mascara, Algeria
Bibliografia
  • [1] N. G. Green, H. Morgan, and J. J. Milner, Manipulation and trapping of sub-micron bioparticles using dielectrophoresis, Journal of Biochemical and Biophysical Methods, 35(1997) , 89-102,
  • [2] J. Voldman, Electrical forces for microscale cell manipulation, Annual Review of Biomedical Engineering, 8(2006), 425-454.
  • [3] P. R. C. Gascoyne and J. Vykoukal, Particle separation by dielectrophoresis, Electrophoresis, 23(2002), 1973-1983.
  • [4] M. P. Hughes, Strategies for dielectrophoretic separation in laboratory-on-a-chip systems, Electrophoresis, 23(2002), 2569-2582.
  • [5] N. Demierre, T. Braschler, R. Muller, and P. Renaud, Focusing and continuous separation of cells in a microfluidic device using lateral dielectrophoresis, Sensors and Actuators B-Chemical, 132(2008), 388-396.
  • [6] E. M. Nascimento, N. Nogueira, T. Silva, T. Braschler, N. Demierre, P. Renaud, and A. G. Oliva, Dielectrophoretic sorting on a microfabricated flow cytometer: Label free separation of Babesia bovis infected erythrocytes, Bioelectrochemistry, 73(2008), 123-128.
  • [7] T. Yasukawa, M. Suzuki, T. Sekiya, H. Shiku, and T. Matsue, Flow sandwich-type immunoassay in microfluidic devices based on negative dielectrophoresis, Biosensors & Bioelectronics, 22(2007), 2730-2736.
  • [8] J. Auerswald and H. F. Knapp, Quantitative assessment of dielectrophoresis as a micro fluidic retention and separation technique for beads and human blood erythrocytes, Microelectronic Engineering, 67(2003), 879-886.
  • [9] Y. Huang, J. M. Yang, P. J. Hopkins, S. Kassegne, M. Tirado, A. H. Forster, and H. Reese, Separation of simulants of biological warfare agents from blood by a miniaturized dielectrophoresis device, Biomedical Microdevices, 5(2003), 217-225.
  • [10] Z. Y. Wang, O. Hansen, P. K. Petersen, A. Rogeberg, J. P. Kutter, D. D. Bang, and A. Wolff, Dielectrophoresis microsystem with integrated flow cytometers for on-line monitoring of sorting efficiency, Electrophoresis, 27(2006), 5081-5092.
  • [11] J. T. Huang, G. C. Wang, K. M. Tseng, and S. B. Fang, A chip for catching, separating, and transporting bio-particles with dielectrophoresis, Journal of Industrial Microbiology & Biotechnology, 35(2008), 1551-1557.
  • [12] U. Kim, J. R. Qian, S. A. Kenrick, P. S. Daugherty, and H. T. Soh, Multitarget Dielectrophoresis Activated Cell Sorter, Analytical Chemistry, 80(2008), 8656-8661.
  • [13] Y. J. Kang, D. Q. Li, S. A. Kalams, and J. E. Eid, DC-Dielectrophoretic separation of biological cells by size, Biomedical Microdevices, 10(2008), 243-249.
  • [14] G. O. F. Parikesit, A. P. Markesteijn, O. M. Piciu, A. Bossche, J. Westerweel, I. T. Young, and Y. Garini, Size-dependent trajectories of DNA macromolecules due to insulative dielectrophoresis in submicrometer-deep fluidic channels, Biomicrofluidics, 2(2008).
  • [15] R. Krishnan, B. D. Sullivan, R. L. Mifflin, S. C. Esener, and M. J. Heller, Alternating current electrokinetic separation and detection of DNA nanoparticles in high-conductance solutions, Electrophoresis, 29(2008), 1765-1774.
  • [16] J. P. Fu, P. Mao, and J. Y. Han, Nanofilter array chip for fast gel-free biomolecule separation, Applied Physics Letters, 87(2005).
  • [17] H. Morgan, M. P. Hughes, and N. G. Green, Separation of submicron bioparticles by dielectrophoresis, Biophysical Journal, 77(1999), 516-525.
  • [18] I. Ermolina, J. Milner, and H. Morgan, Dielectrophoretic investigation of plant virus particles: Cow Pea Mosaic Virus and Tobacco Mosaic Virus, Electrophoresis, 27(2006), 3939-3948.
  • [19] X. B. Wang, Y. Huang, P. R. C. Gascoyne, and F. F. Becker, Dielectrophoretic manipulation of particles, Ieee Transactions on Industry Applications, 33(1997), 660-669.
  • [20] X. B. Wang, Y. Huang, X. J. Wang, F. F. Becker, and P. R. C. Gascoyne, Dielectrophoretic manipulation of cells with spiral electrodes, Biophysical Journal, 72(1997), 1887-1899.
  • [21] L. L. Jia, S. G. Moorjani, T. N. Jackson, and W. O. Hancock, Microscale transport and sorting by kinesin molecular motors, Biomedical Microdevices, 6(2004), 67-74.
  • [22] B. H. Lapizco-Encinas, B. A. Simmons, E. B. Cummings, and Y. Fintschenko, Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators, Analytical Chemistry, 76(2004), 1571-1579.
  • [23] I. F. Cheng, H. C. Chang, and D. Hou, An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting, Biomicrofluidics, 1(2007).
  • [24] F. Du, M. Baune, A. Kuck, and J. Thoming, Dielectrophoretic Gold Particle Separation, Separation Science and Technology, 43(2008), 3842-3855.
  • [25] M. J. Mendes, H. K. Schmidt, and M. Pasquali, Brownian dynamics simulations of single-wall carbon nanotube separation by type using dielectrophoresis, Journal of Physical Chemistry B, 112(2008), 7467-7477.
  • [26] S. Ozuna-Chacon, B. H. Lapizco-Encinas, M. Rito-Palomares, S. O. Martinez-Chapa, and C. Reyes-Betanzo, Performance characterization of an insulator-based dielectrophoretic microdevice, Electrophoresis, 29(2008), 3115-3122.
  • [27] M. D. Vahey and J. Voldman, An equilibrium method for continuous-flow cell sorting using dielectrophoresis, Analytical Chemistry, 80(2008), 3135-3143.
  • [28] Z. G. Wu, A. Q. Liu, and K. Hjort, Microfluidic continuous particle/cell separation via electroosmotic-flow-tuned hydrodynamic spreading, Journal of Micromechanics and Microengineering, 17(2007), 1992-1999.
  • [29] B. G. Hawkins, A. E. Smith, Y. A. Syed, and B. J. Kirby, Continuous-flow particle separation by 3D insulative dielectrophoresis using coherently shaped, dc-biased, ac electric fields, Analytical Chemistry, 79(2007), 7291-7300.
  • [30] D. F. Chen, H. Du, and W. H. Li, A 3D paired microelectrode array for accumulation and separation of microparticles, Journal of Micromechanics and Microengineering, 16(2006), 1162-1169.
  • [31] J. G. Kralj, M. T. W. Lis, M. A. Schmidt, and K. F. Jensen, Continuous dielectrophoretic size-based particle sorting, Analytical Chemistry, 78(2006), 5019- 5025.
  • [32] M. S. Pommer, Y. T. Zhang, N. Keerthi, D. Chen, J. A. Thomson, C. D. Meinhart, and H. T. Soh, Dielectrophoretic separation of platelets from diluted whole blood in microfluidic channels, Electrophoresis, 29(2008), 1213-1218.
  • [33] S. K. Srivastava, P. R. Daggolu, S. C. Burgess, and A. R. Minerick, Dielectrophoretic characterization of erythrocytes: Positive ABO blood types, Electrophoresis, 29(2008), 5033-5046.
  • [34] D. F. Chen and H. J. Du, A dielectrophoretic barrier-based microsystem for separation of microparticles, Microfluidics and Nanofluidics, 3(2007), 603-610.
  • [35] S. Grilli and P. Ferraro, Dielectrophoretic trapping of suspended particles by selective pyroelectric effect in lithium niobate crystals, Applied Physics Letters, 92(2008).
  • [36] M. Yang and X. Zhang, Electrical assisted patterning of cardiac myocytes with controlled macroscopic anisotropy using a microfluidic dielectrophoresis chip, Sensors and Actuators at Physical, 135(2007), 73-79.
  • [37] M. Suzuki, T. Yasukawa, H. Shiku, and T. Matsue, Negative dielectrophoretic patterning with colloidal particles and encapsulation into a hydrogel, Langmuir, 23(2007), 4088-4094.
  • [38] A. Rosenthal and J. Voldman, Dielectrophoretic traps for single-particle patterning, Biophysical Journal, 88(2005), 2193-2205.
  • [39] R. Kretschmer and W. Fritzsche, Pearl chain formation of nanoparticles in microelectrode gaps by dielectrophoresis, Langmuir, 20(2004), 11797-11801.
  • [40] D. R. Albrecht, V. L. Tsang, R. L. Sah, and S. N. Bhatia, Photo- and electropatterning of hydrogel-encapsulated living cell arrays, Lab on a Chip, 5(2005), 111-118.
  • [41] L. C. Hsiung, C. H. Yang, C. L. Chiu, C. L. Chen, Y. Wang, H. Lee, J. Y. Cheng, M. C. Ho, and A. M. Wo, A planar interdigitated ring electrode array via dielectrophoresis for uniform patterning of cells, Biosensors & Bioelectronics, 24(2008), 869-875.
  • [42] Z. Chen, Z. Y. Wu, L. M. Tong, H. P. Pan, and Z. F. Liu, Simultaneous dielectrophoretic separation and assembly of single-walled carbon nanotubes on multigap nanoelectrodes and their thermal sensing properties, Analytical Chemistry, 78(2006), 8069-8075.
  • [43] X. M. Liu, J. L. Spencer, A. B. Kaiser, and W. M. Arnold, Selective purification of multiwalled carbon nanotubes by dielectrophoresis within a large array, Current Applied Physics, 6(2006), 427-431.
  • [44] M. P. Hughes, H. Morgan, and F. J. Rixon, Dielectrophoretic manipulation and characterization of herpes simplex virus-1 capsids, European Biophysics Journal with Biophysics Letters, 30(2001), 268-272.
  • [45] S. Basuray and H. C. Chang, Induced dipoles and dielectrophoresis of nanocolloids in electrolytes, Physical Review E, 75(2007).
  • [46] H. B. Li, Y. N. Zheng, D. Akin, and R. Bashir, Characterization and modeling of a microfluidic dielectrophoresis filter for biological species, Journal of Microelectromechanical Systems, 14(2005), 103-112.
  • [47] J. Suehiro, H. Imakiire, S. Hidaka, W. D. Ding, G. B. Zhou, K. Imasaka, and M. Hara, Schottky-type response of carbon nanotube NO2 gas sensor fabricated onto aluminum electrodes by dielectrophoresis, Sensors and Actuators B-Chemical, 114(2006), 943-949.
  • [48] J. Suehiro, G. B. Zhou, and M. Hara, Fabrication of a carbon nanotube-based gas sensor using dielectrophoresis and its application for ammonia detection by impedance spectroscopy, Journal of Physics D-Applied Physics, 36(2003), L109-L114.
  • [49] C. S. Lao, J. Liu, P. X. Gao, L. Y. Zhang, D. Davidovic, R. Tummala, and Z. L. Wang, ZnO nanobelt/nanowire Schottky diodes formed by dielectrophoresis alignment across Au electrodes, Nano Letters, 6(2006), 263-266.
  • [50] S. K. Lee, T. H. Kim, S. Y. Lee, K. C. Choi, and P. Yang, High-brightness gallium nitride nanowire UV-blue light emitting diodes, Philosophical Magazine, 87(2007), 2105-2115.
  • [51] S. Y. Lee, T. H. Kim, D. I. Suh, E. K. Suh, N. K. Cho, W. K. Seong, and S. K. Lee, Dielectrophoretically aligned GaN nanowire rectifiers, Applied Physics a-Materials Science & Processing, 87(2007), 739-742.
  • [52] T.A.Houari, M.E.Zelmat, and A.Tilmatine, Development of a compact power supply for dielectrophoretic applications, Australian Journal of Electrical and Electronics Engineering, 18(2021), 172-186.
  • [53] S. Masuda, K. Fujibayashi, K. Ishida, H. Inaba, Confinement and transport of charged aerosol clouds by means of electric curtain, The transactions of the Institute of Electrical Engineers of Japan, 92(1972), 9-18.
  • [54] S. Masuda, Apparatus for electric field curtain of contact type. U.S. Patent No. 3,778,678. 11 Dec. 1973.
  • [55] S. Masuda, Booth for electrostatic powder painting with contact type electric field curtain. U.S. Patent No. 3,801,869. 2 Apr. 1974.
  • [56] A.H.Pohl, K.Pollok et J.S.Crane, Dielectrophoretic force: a comparison of theory and experiment, Journal of biological physics, 6(1979), 133-160.
  • [57] M.N.Horenstein, M.Mazumder et R. Jr, Predecting particle trajectories on an electrodynamic screnn-theory and experiment, Journal of electrostatics, 71(2013), 185-188.
  • [58] H. Pang, P. Atten et JL. Reboud, Dépoussiérage électrostatique pour les particules submicroniques en atmosphère usuelle (Terre) et raréfiée (Planète Mars), University of Joseph Fourier - Grenoble 1, 2006.
  • [59] A. Zouaghi, N. Zouzou, Numerical modeling of particle motion in traveling wave solar panels cleaning device, Journal of Electrostatics, 110(2021).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-96d9f806-1af7-4bed-a74e-2df821ab5ca5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.