Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In order to investigate the correlation between the reactivity of Ni-Al and micro-structural differences in the crater walls, penetration experiments were performed with Ni-Al and pure Cu shaped charge liners (SCLs). The experimental results showed that the average penetration depth of Cu jets is 2.3 times that of Ni-Al jets, but the crater entrance diameter of Ni-Al jets is larger by 26.6%. The microstructure of the recovered targets was characterized using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and a Vickers micro-hardness system. The Ni-Al “white” band was thicker than that of Cu because it releases a lot of heat. The micro-hardness test showed that the “white” band had a relatively high hardness, and the “white” band hardness in the tail was more significant than that in the head. However, the micro-structural evolution of the crater walls is related to the reactivity of Ni-Al, but is also related to other factors. Combined with the macro penetration results and the evolution of the micro-structure of the crater walls, the “white” band can absorb impact energy more strongly and weaken the jet breaking ability or armour protection ability.These results can provide more valuable reference for designing shaped charge warheads and protection structures.
Rocznik
Tom
Strony
199--222
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China
autor
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China
autor
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China
autor
- Military Products Research Institute, Shanxi Jiangyang Chemical Co. Ltd., Taiyuan 030051, China
autor
- Hypervelocity Impact Research Center, Harbin Institute of Technology, Harbin 150080, China
autor
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China
autor
- Beijing Special Vehicle Research Institute, Beijing 100072, China
Bibliografia
- [1] Lee, R.J.; Mock, W.; Carney, J.R.; Holt, W.H.; Pangilinan, G.I.; Gamache, R.M.; Boteler, J.M.; Bohl, D.G.; Drotar, J.; Lawrence, G.W. Reactive Materials Studies. Shock Compression of Condensed Matter, AIP Conf. Proc. 2006, 845: 169-174.
- [2] Chen, J.; Chen, Y.J.; Li, X.; Liang, Z.F.; Zhou, T.; Xiao, C. Metallic Reactive Materials Application in Fragmentation Warhead. J. Phys.: Conf. Ser. 2020, 1507: 062004.
- [3] Wang, S.; Kline, J.; Miles, B.; Hooper, J. Reactive Fragment Materials Made from an Aluminum-Silicon Eutectic Powder. J. Appl. Phys. 2020, 128(6): 065903.
- [4] Bates, L.R.; Bourne, B. Oil Well Perforators. Patent US 8220394, 2012.
- [5] Church, P.; Claridge, R.; Ottley, P.; Lewtas, I.; Harrison, N.; Gould, P.; Braithwaite, C.; Williamson, D. Investigation of a Nickel-Aluminum Reactive Shaped Charge Liner. J. Appl. Mech.-T. Asme. 2013, 80(3): 031701.
- [6] Wang, H.; Guo, H.; Geng, B.; Yu, Q.; Zheng, Y. Application of PTFE/Al Reactive Materials for Double-Layered Liner Shaped Charge. Materials 2019, 12(17), paper 2768: 1-18.
- [7] Mayseless, M. Effectiveness of Explosive Reactive Armor. J. Appl. Mech. 2011, 78(5): 748-760.
- [8] Micković, D.; Jaramaz, S.; Elek, P.; Miloradović, N.; Jaramaz, D. A Model for Explosive Reactive Armor Interaction with Shaped Charge Jet. Propellants Explos., Pyrotech. 2016, 41(1): 53-61.
- [9] Smith, G.; Bardenhagen, S.; Nairn, J. Mesoscale Modeling of Al/Ni Composites. Int. J. Impact Eng. 2020, 140, paper 103537: 1-7.
- [10] Bacciochini, A.; Bourdon-Lafleur, S.; Poupart, C.; Radulescu, M.; Jodoin, B. Ni-Al Nanoscale Energetic Materials: Phenomena Involved During the Manufacturing of Bulk Samples by Cold Spray. J. Therm. Spray Techn. 2014, 23(7): 1142-1148.
- [11] Zhou, Q.; Hu, Q.; Wang, B.; Zhou, B.; Chen, P.; Liu, R. Fabrication and Characterization of the Ni-Al Energetic Structural Material with High Energy Density and Mechanical Properties. J. Alloy Compd. 2020, 832, paper 154894: 1-11.
- [12] Zhang, D.; Wang, T.; Yu, Y.; Pan, J.; Wang, W. Preparation and Properties of Ni-Al Energetic Structural Material. Rare Metal Mat. Eng. 2017, 46(11): 3469-3473.
- [13] Xiong, W.; Zhang, X.; Zheng, L.; Bao, K.; Guan, Z. The Shock-Induced Chemical Reaction Behaviour of Al/Ni Composites by Cold Rolling and Powder Compaction. J. Mater. Sci. 2019, 54(1): 6651-6667.
- [14] Zhukov, A.N.; Yakushev, V.A.; Ananev, S.Y.; Dobrygin, V.V.; Dolgoborodov, A.Y. Investigation of Nickel Aluminide Formed Due to Shock Loading of Aluminum- Nickel Mixtures in Flat Recovery Ampoules. Combust. Explos. Shock Waves 2018, 54(1): 64-71.
- [15] Wong, J.; Larson, E.M.; Holt, J.B.; Waide, P.A.; Rupp, B.; Frahm, R. Time-Resolved X-ray Diffraction Study of Solid Combustion Reactions. Science 1990, 249(4975): 1406-1409.
- [16] Song, I.; Thadhani, N.N. Shock-Induced Chemical Reactions and Synthesis of Nickel Aluminides. Metall. Trans. A 1992, 23(1): 41-48.
- [17] Fischer, S.H.; Grubelich, M.C. Theoretical Energy Release of Thermites, Intermetallics, and Combustible Metals. Office of Scientific & Technical Information Technical Reports, US, 1999.
- [18] Turrillas, X.; Mas-Guindal, M.J.; Hansen, T.C.; Rodríguez, M.A. The Thermal Explosion Synthesis of AlNi Monitored by Neutron Thermodiffractometry. Acta Mater. 2010, 58(7): 2769-2777.
- [19] Merzhanov, A.G.; Gordopolov, Y.A.; Trofimov, V.S. On the Possibility of Gas Free Detonation in Condensed Systems. Shock Waves 1996, 6: 157-159.
- [20] Gordopolov, Y.A.; Batsanov, S.S.; Trofimov, V.S. Shock-Induced Solid-Solid Reactions and Detonations. In: Shock Wave Science and Technology Reference Library, Vol. 4, (Zhang, F., Ed.) Springer-Verlag, Berlin/Heidelberg, 2009, pp. 287-314; ISBN 978-3-540-88446-0.
- [21] Guo, H.; Zheng, Y.; Yu, Q.; Ge, C.; Wang, H. Penetration Behavior of Reactive Liner Shaped Charge Jet Impacting Thick Steel Plates. Int. J. Impact Eng. 2019, 126: 76-84.
- [22] Guo, H.; Xie, J.; Wang, H.; Yu, Q.; Zheng, Y. Penetration Behavior of High-Density Reactive Material Liner Shaped Charge. Materials 2019, 12(21), paper 3486: 1-14.
- [23] Byun, G.; Kim, J.; Lee, C.; Kim, S.J.; Lee, S. Kinetic Spraying Deposition of Reactive-Enhanced Al-Ni Composite for Shaped Charge Liner Applications. J. Therm. Spray Techn. 2016, 25(3): 483-493.
- [24] Lee, S.; Kim, J.; Kim, S.; Lee, S.; Jeong, J.; Lee, C. Performance Comparison of Double-Layer Liner for Shaped Charge Fabricated Using Kinetic Spray. J. Therm. Spray Techn. 2019, 28(3): 484-494.
- [25] Sun, M.; Li, C.; Zhang, X.; Hu, X.; Hu, X.; Liu, Y. Reactivity and Penetration Performance Ni-Al and Cu-Ni-Al Mixtures as Shaped Charge Liner. Materials 2018, 11(11), paper 2267: 1-11.
- [26] Yin, Z.; Ma, C.; Li, S.; Cheng, G. Perforation of an Ultra-High Strength Steel Penetrated by Shaped Charge Jet. Mater. Sci. Eng. A 2004, 379(1-2): 443-447.
- [27] Voitenko, Y.I.; Zakusylo, R.V.; Wojewódka, A.T.; Gontar, P.A.; Gerlich, M.M.; Drachuk, O.G. New Functional Materials in Mechanical Engineering and Geology. Cent. Eur. J. Energ. Mat. 2019, 16(1): 135-149.
- [28] Bai, X.; Liu, J.; Li, S.; Lv, C.; Guo, W.; Wu, T. Effect of Interaction Mechanism between Jet and Target on Penetration Performance of Shaped Charge Liner. Mater. Sci. Eng. A 2012, 553(15): 142-148.
- [29] Bassim, M.; Boakye-Yiadom, S.; Bolduc, M. Microstructural Evolution from Shaped Charge through Steel Plates. Appl. Mech. Mater. 2014, 566: 344-349.
- [30] Lambert, D. Re-Visiting 1-D Hypervelocity Penetration. Int. J. Impact Eng. 2008, 35(12): 1631-1635.
- [31] Bai, Y.; Cheng, C.; Yu, S. On Evolution of Thermo-Plastic Shear Band. Acta Mech. Sinica-Prc. 1986, 2(1): 1-7.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-96d2b0b8-74ed-4a32-ac3f-63fe22e5e545