PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Validation of Numerical Simulations of Cavitating Flow in Convergent-Divergent Nozzle

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the article, validation of results of numerical simulations of cavitating flow in a convergent-divergent nozzle is presented. In validation, a new optoelectronic system is used in order to extract the changes in the bubbles volume fraction of the mixture in freely specified cross-sections. Three homogeneous models (Schnerr and Sauer, Singhal et al. and Zwart et al.) are analysed. The assessment of usefulness of the new system in experimental measurements of cavitation is the main aim of the article. Looking for new opportunities to replace image analysis, which is a traditional validation method in numerical simulations of cavitating flows, is motivation for the research. The results obtained with the use of the system show a good agreement with the simulation’s results for the two chosen cross-sections. The described optoelectronic system gives promising results and can be regarded as an alternative to traditional validation methods in the cavitation research area.
Wydawca
Rocznik
Strony
329--332
Opis fizyczny
Bibliogr. 31 poz., rys., schem., tab., wykr., wzory
Twórcy
  • Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, 11 Oczapowskiego St., 10-736 Olsztyn, Poland
autor
  • Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, 11 Oczapowskiego St., 10-736 Olsztyn, Poland
Bibliografia
  • [1] Ashrafizadeh S. M. and Ghassemi H.: Experimental and numerical investigation on the performance of small-sized cavitating venturis. Flow Measurements and Instrumentation, vol. 42, pp. 6-15, 2015.
  • [2] Crum. L. A.: Nucleation and stabilization of microbubbles in liquids. Applied Scientific Research, vol. 38, pp. 101-115, 1982.
  • [3] Frikha S., Coutier-Delgosha O. and Astolfi J. A.: Influence of the cavitation model on the simulation of cloud cavitation on 2D foil section. International Journal of Rotating Machinery, 146234, 2008.
  • [4] Ausoni P., Zobeiri A., Avellan F. and Farhat M.: The effects of a tripped turbulent boundary layer on vortex shedding from a blunt trailing edge hydrofoil. Journal of Fluids Engineering, vol. 134(5), 051207, 2012.
  • [5] Kravtsova A. Y., Markovich D. M., Pervunin K. S., Timoshevskiy M. V. and Hanjalić K.: High-speed imaging of cavitation regimes on a round-leading-edge flat plate and NACA0015 hydrofoil. Journal of visualization, vol. 16(3), pp. 181-184, 2013.
  • [6] Timoshevskiy M. V., Churkin S. A., Kravtsova A. Y., Pervunin K. S., Markovich D. M. and Hanjalić K.: Cavitating flow around a scaled-down model of guide vanes of a high-pressure turbine. International Journal of Multiphase Flow, vol. 78, pp. 75-87, 2016.
  • [7] Katz J. and Acosta A.. Observations of nuclei in cavitating flows. Applied Scientific Research, vol. 38, pp. 123-132, 1982.
  • [8] Lauterborn W.: Cavitation bubble dynamics-new tools for an intricate problem. Applied Sci. Research, vol. 38, pp. 165-178, 1982.
  • [9] Dular M., Bachert R., Stoffel B. and Širok B.: Experimental evaluation of numerical simulation of cavitating flow around hydrofoil. European Journal of Mechanics-B/Fluids, vol. 24, pp. 522-538, 2005.
  • [10] Kravtsova A. Y., Markovich D. M., Pervunin K. S., Timoshevskiy M. V. and Hanjalić K.: High-speed visualization and PIV measurements of cavitating flows around a semi-circular leading-edge flat plate and NACA0015 hydrofoil. International Journal of Multiphase Flow, vol. 60, pp. 119-134, 2014
  • [11] Barre S., Rolland J., Boitel G., Goncalves E. and Patella R. F.: Experiments and modeling of cavitating flows in venturi: attached sheet cavitation. European Journal of Mechanics-B/Fluids, vol. 28, pp. 444-464, 2009.
  • [12] Coutier-Delgosha O., Devillers J. F., Pichon T., Vabre A., Woo R. and Legoupil S.: Internal structure and dynamics of sheet cavitation. Physics of Fluids, vol. 18, 017103, 2006.
  • [13] Stutz B. and Reboud J. L.: Measurements within unsteady cavitation. Experiments in Fluids, vol. 29(6), pp. 545-552, 2000.
  • [14] Stutz, B. and Legoupil, S.: X-ray measurements within unsteady cavitation. Experiments in Fluids, vol. 35(2), pp. 130-138, 2003.
  • [15] Liu T. G., Khoo B. C. and Xie W. F.: Isentropic one-fluid modelling of unsteady cavitating flow. Journal of Computational Physics, vol. 201 (1), pp. 80-108, 2004.
  • [16] Sobieski W.: The basic equations of fluid mechanics in form characteristic of the finite volume method. Technical Sciences, vol. 14, pp. 299-313, 2011.
  • [17] Plesset M. S. and Prosperetti A.: Bubble dynamics and cavitation. Annual Review of Fluids Mechanics, vol. 9, pp. 145-185, 1977.
  • [18] Kubota A., Kato H. and Yamaguchi H.: A new modeling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section. Journal of Fluid Mechanics, vol. 240, pp. 59-96, 1992.
  • [19] Huang B. and Wang G. Y.: A modified density based cavitation model for time dependent turbulent cavitating flow computations. Chinese Science Bulletin, vol. 56, pp. 1985-1992, 2011.
  • [20] Iben U.: Modeling of cavitation. Systems Analysis Modeling Simulations, vol. 42, pp. 1283-1307, 2002.
  • [21] Kunz R. F., Bogger D. A., Chyczewski T. S., Stinebring D. R. and Gibeling H.J.: Multi-phase CFD analysis of natural and ventilated cavitation about submerged bodies. Third ASME/JSME Joint Fluids Engineering Conference (FEDSM’99), vol. 99(1), 1999.
  • [22] Merkle C. L., Feng J. and Buelow P. E. O.: Computational modeling of the dynamics of sheet cavitations. Third International Symposium on Cavitation (CAV’03), 1998.
  • [23] Schnerr G. H. and Sauer J.: Physical and numerical modeling of unsteady cavitation dynamics. Fourth International Conference on Multiphase Flow (ICMF’01), 2001.
  • [24] Singhal A. K., Athavale M. M., Li H. and Jiang Y.. Mathematical basis and validation of the full cavitation Model. Journal of Fluids Engineering, vol. 124, pp. 617-624, 2002.
  • [25] Zwart P. J., Gerber G. and Belamri T.: A two-phase flow model for prediction cavitation dynamics. ICMF 2004 - International Conference on Multiphase Flow, 2004.
  • [26] Goel T., Thakur S., Haftka R., Shyy W. and Zhao J.: Surrogate model-based strategy for cryogenic cavitation model validation and sensitivity evaluation. International Journal for Numerical Methods in Fluids, vol. 58, pp. 969-1007, 2008.
  • [27] Goncalves E. and Charrière B.: Modeling for isothermal cavitation with a four-equation model. International Journal of Multiphase Flow, vol. 59, pp. 54-72, 2014.
  • [28] Senocack I. and Shyy W.: Numerical simulation of turbulent flows with sheet cavitation. Proceedings of the Fourth International Symposium on Cavitation (CAV2001), Pasadena, USA, 2001.
  • [29] Žnidarčič A., Mettin R. and Dular M.: Modelling cavitation in a rapidly changing pressure field – application to a small ultrasonic horn. Ultrasonic Sonochemistry, vol. 22, pp. 482-492, 2015.
  • [30] Niedźwiedzka A., Schnerr G. H. and Sobieski W.: Review of numerical models of cavitating flows with the use of the homogeneous approach. Archives of Thermodynamics, 2016, in press.
  • [31] Niedźwiedzka A. and Sobieski W.: Experimental investigations of cavitating flows in a Venturi tube. Technical Sci., vol. 19(2), 2016.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-96d211e5-0da7-46dc-8eb6-87851e06b2de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.