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Abstract. In the paper we consider a nonlinear control system governed by the Volterra
integral operator. Using a version of the global implicit function theorem we prove that the
control system under consideration is well-posed and robust, i.e. for any admissible control u
there exists a uniquely defined trajectory xu which continuously depends on control u and
the operator u 7→ xu is continuously differentiable. The novelty of this paper is, among others,
the application of the Bielecki norm in the space of solutions which allows us to weaken
standard assumptions.
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1. INTRODUCTION

In the paper we investigate the following system described by a nonlinear integral
equation of the Volterra type with a functional parameter u

x(t) +
t∫

0

V (t, τ, x(τ), u(τ)) dτ = 0, t ∈ [0, 1] . (1.1)

The parameter u can be referred to as a control.
We shall consider system (1.1) in the space of absolutely continuous trajectories

H̄1 and in the set U of controls. Since the trajectories of control system (1.1) are
absolutely continuous on interval [0, 1], we see that it reduces to the classical control
system described by ordinary differential equations, provided the function V does not
depend on t (see Example 4.2)

Under some appropriate assumption, to be specified in the next section we prove
that for any admissible control u there exists exactly one trajectory xu to system (1.1)
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and the operator u 7→ xu is differentiable in the Fréchet sense. It implies that control
system (1.1) is stable and robust. Here, the stability means that solution xu depends
continuously on parameter u. In engineering robustness is usually understood as the
ability of a system to resist change without adapting its initial stable configuration [5].
If the operator u 7→ xu is differentiable then the change of the solution caused by the
change of the parameter is not rapid. The speed of this change can be expressed by
the derivative of the operator u 7→ xu, which measures the resistance of the system to
the change of u.

Integral operators and integral equations have essential applications in technical
sciences, physics, biology etc. In particular, Volterra operators in the form of convolution

x(t) +
t∫

0

w (t− τ) · z (x(τ), u(τ)) dτ = 0

with nonlinear function z (especially with respect to x) has many applications in
general control theory with feedback loops, see [8,13,15] and references therein, in the
mathematical model of nuclear reactors, see [11, 12, 17], in the study of viscoelastic
materials with memory, see [18] and in epidemiology see for example [4] and the book
[8] by Gripenberg et al.

The paper is organised as follows. In section 2 we introduce the problem, assump-
tions and discuss the space of solutions and parameters. Section 3 includes the main
result of the paper, that is, Theorem 3.4. Finally, in section 4 we calculate a simple
Example 4.1 and discuss the application of the result to the classical Cauchy problem
(Example 4.2).

The problem of the smooth dependence of solutions on the parameter of integral
or integro-differential equations was discussed in papers [2, 6, 7, 9, 10].

The novelty of this paper, in contrast to papers [9, 10] is, among others, the
application of the Bielecki norm in the space of solutions which allows us to weaken
one of the assumptions (see Remark 2.3 for details).

2. BASIC NOTIONS AND ASSUMPTIONS

Let us consider the integro-differential system (1.1), where V : P4 × Rn × Rk → Rn,
I is the unit interval in R, i.e. I := [0, 1] and P4 :=

{
(t, τ) ∈ R2 : 0 ≤ τ ≤ t ≤ 1

}
.

We consider system (1.1) in the space H̄1 = H̄1(I,Rn) of absolutely continuous
functions x : I → Rn such that x (0) = 0 and the derivative ẋ is a square integrable
function, i.e. ẋ ∈ L2(I,Rn). We assume that the parameter (control) u belongs to the
set U := L∞

(
I,Rk

)
.

For m ≥ 0, let

‖x‖m :=




1∫

0

e−mt |ẋ(t)|2 dt




1
2

. (2.1)
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It is easy to see that for any m ≥ 0 the function ‖·‖m defines a norm in H̄1 (the
so-called Bielecki norm, see [1]) and

e−
m
2 ‖x‖0 ≤ ‖x‖m ≤ ‖x‖0 . (2.2)

Thus, for any m ≥ 0 the norms ‖·‖0 and ‖·‖mare equivalent and therefore any two
norms ‖·‖m1

and ‖·‖m1
are equivalent.

It is worth pointing out the in H̄1 we can define the inner product by the formula

〈x, y〉m :=
1∫

0

e−mt 〈ẋ(t), ẏ(t)〉Rn dt, (2.3)

where m ≥ 0 is a given number. The above inner product defines the norm ‖·‖m and
the space H̄1 is a Hilbert space.
Remark 2.1. It can be proved (see [14]) that the weak convergence xs ⇀ x0 in
H̄1 implies the uniform convergence xs ⇒ x0 and the weak convergence ẋs ⇀ ẋ0 of
derivatives in L2. Also, it is worth pointing out that in [14] the proof of the uniform
convergence (cf. [14, Lemma 1.2]) is based on the Arzeli theorem which gives the
convergence only for a subsequence. However, the uniform convergence is true for
the whole sequence. This can be justified by a standard argument. Suppose that
xs ⇀ x0 in H̄1 and xs does not tend to x0 uniformly (but the convergence is true for
a subsequence). Since xs does not tend to x0 uniformly we can choose a subsequence
whose terms are “far from x0”, but this subsequence also tends weakly to x0 and we
can choose a subsequence which tends uniformly to x0. So, we get a contradiction.

For m ≥ 0, let

‖x‖L2,m :=




1∫

0

e−mt |x(t)|2 dt




1
2

for x ∈ L2(I,Rn). It is obvious, that the above formula defines the family of equivalent
norms in L2 (I,Rn). Let us now state and prove a technical lemma which we will
simplify our further considerations.
Lemma 2.2. For any x ∈ H̄1 and m > 0 one has

‖x‖L2,m ≤
‖x‖m√
m

and ∥∥∥∥∥∥

·∫

0

|x(τ)| dτ

∥∥∥∥∥∥
L2,m

=




1∫

0

e−mt




t∫

0

|x(τ)|2 dτ




2

dt




1
2

≤ ‖x‖m
m

,

where for a given integrable function z the symbol
·∫

0
z(τ)dτ denotes the function

[0, 1] 3 t 7→
t∫

0
z(τ)dτ .
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Proof. Fix m > 0. Of course, if x ∈ H̄1 then x ∈ L2 (I,Rn) . Using the Schwartz
inequality and integrating by parts we get

‖x‖2
L2,m =

1∫

0

e−mt |x (t)|2 dt =
1∫

0

e−mt

∣∣∣∣∣∣

t∫

0

ẋ(τ)dτ

∣∣∣∣∣∣

2

dt ≤
1∫

0

e−mt
∫ t

0
|ẋ(τ)|2 dτdt

=


− 1

m
e−mt

t∫

0

|ẋ(τ)|2 dτ



t=1

t=0

+ 1
m

1∫

0

e−mt |ẋ(t)|2 dt ≤ ‖x‖
2
m

m

and from the above inequality
∥∥∥∥∥∥

·∫

0

|x(τ)| dτ

∥∥∥∥∥∥

2

L2,m

=
1∫

0

e−mt




t∫

0

|x(τ)| dτ




2

dt ≤
1∫

0

e−mt




t∫

0

|x(τ)|2 dτ


 dt

=


− 1

m
e−mt

t∫

0

|x(τ)|2 dτ



t=1

t=0

+ 1
m

1∫

0

e−mt |x(t)|2 dt

≤ 1
m
‖x‖2

L2,m ≤
‖x‖2

m

m2 .

We impose the following assumptions on the function V defining system (1.1):
(A1) the function V (·, τ, ·, ·) is continuous on the set G := I × Rn × Rk for a.e.

τ ∈ I; there exist derivatives Vt, Vx, Vxt, Vu, Vut and the functions Vt (·, τ, ·, ·),
Vx (·, τ, ·, ·), Vxt (·, τ, ·, ·), Vu (·, τ, ·, ·), Vut (·, τ, ·, ·) are continuous on G for a.e.
τ ∈ I,

(A2) the functions V, Vt, Vx, Vxt, Vu , Vut are measurable with respect to τ for (t, x, u) ∈
I ×Rn ×Rk and locally bounded with respect to x and u, i.e. for any ρ1, ρ2 > 0
there exists a function M ∈ L2 (I,R) such that

|V (t, τ, x, u)| , |Vt (t, τ, x, u)| , |Vx(t, τ, x, u)| , |Vxt(t, τ, x, u)| ,
|Vu(t, τ, x, u)| , |Vut(t, τ, x, u)| ≤M(τ)

for t ∈ I, |x| ≤ ρ1, |u| ≤ ρ2 and a.e. τ ∈ I.
(A3) for any u ∈ L∞

(
I,Rk

)
there exists a constant Ā > 0 and functions B1, C ∈

L2 (I,R+) and A,B2 ∈ L2 (P4,R+) such that
t∫

0

A2(t, τ)dτ ≤ Ā2

for a.e. t ∈ [0, 1] and

|V (t, t, x, u(t))| ≤ C(t) |x|+B1(t)
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for x ∈ Rn and a.e. t ∈ I and

|Vt (t, τ, x, u(τ))| ≤ A(t, τ) |x|+B2 (t, τ)

for x ∈ Rn and a.e. (t, τ) ∈ P4.
Remark 2.3. It should be emphasized that we do not make any assumption on the
constant Ā in (A3). If we compare this with the corresponding assumption in papers
[6,9] or [7] we see that it is usually assumed that the coefficient in the linearity should
satisfy a specific additional condition connected with the diagonal of the square [0, 1]2 .
This condition is removed in our paper thanks to the application of the Bielecki norm.

3. MAIN RESULT

In this section we will prove the main result of this paper, i.e. that for any
u ∈ L∞

(
I,Rk

)
there exists exactly one solution xu ∈ H̄1 to (1.1) and the solution

depends in a differentiable way on the parameter u.
Define the operator F : H̄1 × L∞

(
I,Rk

)
→ H̄1 by

F (x, u) (t) := x(t) +
t∫

0

V (t, τ, x(τ), u(τ)) dτ, (3.1)

where x ∈ H̄1, u ∈ L∞
(
I,Rk

)
. Based on Assumption (A2), it can easily be shown

(in a similar manner as in [3]) that for any x ∈ H̄1 and u ∈ L∞
(
I,Rk

)
, the function

y : I → Rn given by

y(t) := x(t) +
t∫

0

V (t, τ, x (τ) , u(τ)) dτ

is absolutely continuous, y (0) = 0 and ẏ ∈ L2 (I,Rn). Thus the operator F is
well-posed. Moreover, we have the following result.

Proposition 3.1. Assume (A1)–(A2), then the operator F defined by (3.1) is con-
tinuously Fréchet differentiable at every point (x, u) ∈ H̄1 × L∞

(
I,Rk

)
and for any

(h, v) ∈ H̄1 × L∞
(
I,Rk

)
we have

(F ′ (x, u) (h, v)) (t)

= h(t) +
t∫

0

Vx (t, τ, x(τ), u(τ))h(τ)dτ +
t∫

0

Vu (t, τ, x(τ), u(τ)) v(τ)dτ

for t ∈ [0, 1] .
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Proof. Based on assumptions (A1)–(A2) it can be easily shown that

d

dθ
F (x+ θh, u+ θv)

∣∣∣∣
θ=0

= h(t) +
t∫

0

Vx (t, τ, x(τ), u(τ))h(τ)dτ +
t∫

0

Vu (t, τ, x(τ), u(τ)) v(τ)dτ (3.2)

and the operator

H̄1 × L∞
(
I,Rk

)
3 (h, v) 7→ d

dθ
F (x+ θh, u+ θv)

∣∣∣∣
θ=0

is linear and bounded with values in H̄1. Therefore F is Gâteaux differentiable with
the Gâteaux differential FG defined by (3.2). To prove that F is continuously Fréchet
differentiable it is enough to show that FG is continuous. Let (x0, u0) ∈ H̄1×L∞

(
I,Rk

)

and let (xn, un)→ (x0, u0) in H̄1×L∞
(
I,Rk

)
as n→∞. Note that from the Schwartz

inequality we get immediately that for x ∈ H̄1

|x(t)| ≤
t∫

0

|x (s)| ds ≤ ‖x‖2
, t ∈ [0, 1] . (3.3)

Taking into account the above and again applying the Schwarz inequality we get

‖FG (xn, un) (h, v)− FG (x0, u0) (h, v)‖

≤ ‖h‖




1∫

0

|Vx (t, t, xn(t), un(t))− Vx (t, t, x0(t), u0(t))|2 dt




1
2

+ ‖h‖




1∫

0

t∫

0

|Vxt (t, τ, xn(τ), un(τ))− Vxt (t, τ, x0(τ), u0 (τ))|2 dτdt




1
2

+ ‖v‖∞




1∫

0

t∫

0

|Vut (t, τ, xn(τ), un(τ))− Vut (t, τ, x0(τ), u0 (τ))|2 dτdt




1
2

+ ‖v‖∞




1∫

0

|Vu (t, t, xn(t), un(t))− Vu (t, t, x0(t), u0(t))|2 dt




1
2

.

By (3.3), the sequence (xn, un) converges pointwise to (x0, u0) (almost everywhere
on [0, 1]) and, in view of (A1)–(A2), we can apply Lebesgue’s dominated convergence
theorem (the iterated integral can be considered as the double integral on the set P4).
Consequently, we get that ‖FG (xn, un) (h, v)− FG (x0, u0) (h, v)‖ → 0 as n→∞ and
F is continuously Fréchet differentiable.
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Remark 3.2. From Proposition 3.1 it follows that for any h ∈ H̄1 we have

(F ′x (x, u)h) (t) = h(t) +
t∫

0

Vx (t, τ, x(τ), u(τ))h(τ)dτ. (3.4)

The proof of the main result is based on the following global implicit function
theorem [9].
Theorem 3.3. Let X,Y be real Banach spaces and H be a real Hilbert space. If
F : X × Y → H is of class C1 and
(a) the differential Fx (x, y) : X → H is bijective for any (x, y) ∈ X × Y ,
(b) the functional

f : X 3 x 7→ 1
2 ‖F (x, y)‖2 ∈ R

satisfies the Palais–Smale condition for any y ∈ Y,
then there exists a unique function λ : Y → X such that the equation F (x, y) = 0 and
λ (y) = x are equivalent in the set X × Y. The above function λ is of class C1 with
the derivative given by formula

λ′ (y) = − [Fx (λ (y) , y)]−1 ◦ Fy (λ (y) , y) (3.5)

for y ∈ Y.
Let us recall that a sequence (xs) ⊂ X is said to be a Palais–Smale sequence (PS)

for functional f : X → R if there is a constans R > 0 such that ‖f(xs)‖ ≤ R and
f ′(xs)→ 0 as s→∞. We say that f satisfies Palais–Smale (PS) condition if any (PS)
sequence admits a convergent subsequence.

Now we are ready to formulate the main result.
Theorem 3.4. If the function V satisfies assumptions (A1)–(A3) then for any ad-
missible parameter (control) u ∈ L∞

(
I,Rk

)
there exists a uniquely defined solution

(trajectory) xu to (1.1). Moreover, the operator

U 3u 7→ xu ∈ H̄1

is of C1 class (it is continuously differentiable in the Fréchet sense).
We have divided the proof into a sequence of lemmas. To begin with let us prove

the following
Lemma 3.5. If the function V satisfies assumptions (A1)–(A2) then for any given
x0 ∈ H̄1 and u0 ∈ L∞

(
I,Rk

)
the linear equation

h(t) +
t∫

0

Vx (t, τ, x0(τ), u0(τ))h(τ)dτ = g (t) (3.6)

possesses a unique solution h ∈ H̄1, where g ∈ H̄1 is an arbitrarily fixed function.
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Proof. Fix x0 ∈ H̄1 and u0 ∈ L∞
(
I,Rk

)
. Let us denote by K the kernel of integral

equation (3.6), i.e.
K(t, τ) := Vx (t, τ, x0(τ), u0(τ)) . (3.7)

By (A2), the kernel K ∈ L2 (P4,R) therefore by the well-known sufficient condition
for the existence of a solution to a linear integral equation with square integrable
kernel (see [16,19]), there exists a unique solution h ∈ L2(I,Rn) to (3.6). Moreover,
directly from (3.6) and (A2) it follows that h is absolutely continuous, h (0) = 0 and
ḣ ∈ L2 (I,Rn) . Thus equation (3.6) possesses a unique solution in the space H̄1 for
any given g ∈ H̄1.

Let
ϕu (x) := 1

2 ‖F (x, u)‖2
0 , x ∈ H̄1,

where u ∈ L∞
(
I,Rk

)
is fixed and F is defined by (3.1).

Lemma 3.6. If V satisfies (A1)–(A3) then for any fixed u ∈ L∞
(
I,Rk

)
the functional

ϕu is coercive, i.e. ϕu(xs)→∞ if ‖xs‖0 →∞.
Proof. Fix u ∈ L∞

(
I,Rk

)
. It is sufficient to show that there is a constant m ≥ 0 such

that
‖F (xs, u)‖m →∞ if ‖xs‖m →∞.

By (A3) and thanks to Lemma 2.2, we have

‖F (x, u)‖m

=




1∫

0

e−mt

∣∣∣∣∣∣
ẋ(t) + V (t, t, x (t) , u(t)) +

t∫

0

Vt (t, τ, x(τ), u(τ)) dτ

∣∣∣∣∣∣

2

dt




1
2

=

∥∥∥∥∥∥
ẋ+ V (·, ·, x (·) , u (·)) +

·∫

0

Vt (·, τ, x (τ) , u(τ)) dτ

∥∥∥∥∥∥
L2,m

≥ ‖ẋ‖L2,m − ‖V (·, ·, x (·) , u (·))‖L2,m −

∥∥∥∥∥∥

·∫

0

Vt (·, τ, x (τ) , u(τ)) dτ

∥∥∥∥∥∥
L2,m

≥ ‖ẋ‖L2,m − ‖C‖L2,m · ‖x‖L2,m − ‖B1‖L2,m

− Ā

∥∥∥∥∥∥

·∫

0

|x(τ)| dτ

∥∥∥∥∥∥
L2,m

−

∥∥∥∥∥∥

·∫

0

B2 (·, τ) dτ

∥∥∥∥∥∥
L2,m

≥ ‖x‖m − ‖C‖L2,m

‖x‖m√
m
− Ā‖x‖m

m
+D,

where D := −‖B1‖L2,m −
∥∥∫ ·

0 B2 (·, τ) dτ
∥∥
L2,m

and does not depend on (x, u) . Con-

sequently, for a sufficiently large m > 0, that is m ≥ max
{

1, ‖C‖L2,0 + Ā
}
, we have

that ‖F (xs, u)‖m →∞ if ‖xs‖m →∞ and ϕu is coercive.
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Lemma 3.7. If V satisfies (A1)–(A3) then the functional ϕu satisfies the (PS)
condition for any u ∈ L∞

(
I,Rk

)
.

Proof. Fix u ∈ U . Let (xs) ⊂ H̄1 be a (PS) sequence for ϕu. We have that (xs) is
bounded. Suppose it were false. Passing to a subsequence if necessary, we may assume
that ‖xs‖ → ∞ as s → ∞. Consequently, by Lemma 3.6, ϕu(xs) → ∞, but this
contradicts the fact that (xs) is a (PS) sequence for ϕu. Since H̄1 is a Hilbert space
and (xs) is bounded, therefore it admits a subsequence (still denoted by (xs)) such
that xs ⇀ x0 weakly in H̄1. By (2.3) and (3.4), we obtain that

ϕ′u(xs)h = 〈F (xs, u) , F ′x (xs, u)h〉0

=
1∫

0

〈
ẋs(t) + V (t, t, xs(t), u(t)) +

t∫

0

Vt (t, τ, xs(τ), u(τ)) dτ,

ḣ(t) + Vx (t, t, xs(t), u(t))h(t) +
t∫

0

Vxt (t, τ, xs(τ), u(τ))h (t) dτ
〉

Rn

dt (3.8)

for s = 0, 1, 2, . . ., where h ∈ H̄1. Let us put hs = xs − x0, s = 1, 2, . . .. In view of
(3.8) direct calculations lead to the equality

(ϕ′u(xs)− ϕ′u (x0))hs = ‖xs − x0‖2
0 + φ1 (xs, hs)− φ1 (x0, hs) + φ2(xs, ḣs)

− φ2(x0, ḣs) + φ3 (xs, hs)− φ3 (x0, hs)
(3.9)

for s = 1, 2, . . ., where

φ1 (x, h) =
1∫

0

〈
ẋ (t) , Vx (t, t, x(t), u(t))h(t) +

t∫

0

Vxt (t, τ, x(τ), u(τ))h(τ)dτ
〉

Rn

dt,

φ2(x, ḣ) =
1∫

0

〈
V (t, t, xs (t) , u(t)) +

t∫

0

Vt (t, τ, x(τ), u(τ)) dτ, ḣ(t)
〉

Rn

dt, (3.10)

φ3 (x, h) =
1∫

0

〈
V (t, t, xs(t), u(t)) +

t∫

0

Vt (t, τ, xs(τ), u(τ)) dτ,

Vx (t, t, xs(t), u(t))hs(t) +
t∫

0

Vxt (t, τ, xs (τ) , u(τ))hs(τ)dτ
〉

Rn

dt.

By (A2) and thanks to the Schwarz inequality, we have
∣∣φ1 (x, h)

∣∣ ≤ 2 max
t∈I
|h(t)| · ‖x‖0 · ‖M‖L2 ,

∣∣φ3(x, h)
∣∣ ≤ 4 max

t∈I
|h (t)| ‖M‖2

L2 .
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Since the weak convergence (xs) implies the uniform convergence (see Remark 2.1), we
have that hs = xs − x0 ⇒ 0 uniformly on I as s→∞ and (xs) is bounded, therefore
φ1 (xs, hs) , φ1 (x0, hs) , φ3 (xs, hs) and φ3 (x0, hs) tend to zero as s → ∞. To prove
that (φ2(xs, ḣs)− φ2(x0, ḣs))→ 0 as s→ 0 we proceed in a slightly different way. Let

gs(t) := V (t, t, xs(t), u(t)) +
t∫

0

Vt (t, τ, x (τ) , u(τ)) dτ for t ∈ I and s = 0, 1, . . . .

Thanks to (A1)–(A2), the fact that xs ⇒ x0 uniformly on I as s→∞ and applying
the Lebesgue dominated convergence theorem we get that gs tends to g0. By (3.10),
we have

∣∣φ2(xs, ḣs)− φ2(x0, ḣs)
∣∣ =

∣∣∣∣∣∣

1∫

0

〈
gs(t)− g0 (t) , ḣs(t)

〉
dt

∣∣∣∣∣∣
≤
∥∥ḣs
∥∥
L2 ‖gs − g0‖L2,0 .

Applying the Lebesgue dominated convergence theorem (thanks to (A2)) once again
and making use of the fact that (ḣs) is bounded in L2 (conf. the definition of the norm in
H1), we infer that (φ2(xs, ḣs)−φ2(x0, ḣs))→ 0 as s→ 0. Finally, thanks to the fact that
(xs) is the (PS) sequence and (ḣs) is bounded we see that (ϕ′u (xs)− ϕ′u (x0))hs → 0
as s→ 0. Consequently, in view of (3.9), we have that ‖xs − x0‖2

0 → 0 as s→ 0 and
therefore ϕu satisfies the (PS) condition.

Now we can prove Theorem 3.4.

Proof of Theorem 3.4. Let X := H̄1, Y := L∞
(
I,Rk

)
and H := H̄1. In a standard

way we check that the operator F defined by (3.1) is of C1 class. Thanks to Lemmas
3.5 and 3.7, we know that all the assumptions of Theorem 3.3 are satisfied, therefore
the assertion of Theorem 3.4 is satisfied.

4. EXAMPLES

In this section we present an illustrative example and discuss the application of the
main result to the problem of existence and smooth dependence on the parameter of
a classical Cauchy problem.

Example 4.1. Let V : P4 × Rn × Rk → Rn be defined by the formula

V (t, τ, x, u) := xTQ1(t, τ)x
1 + xTQ2x

x+ g (τ, u) cos |x|2 ,

where the matrix-valued function Q1 : P4 → Rn×n is continuous together with
its derivative (Q1)t, the (constant) matrix Q2 ∈ Rn×n is positively defined,
g : I × Rk → Rn is continuous together with its derivative gu. Consider a control system
of the form (1.1) with defined above function V , where x ∈ H̄1(I,Rn), u ∈ L∞

(
I,Rk

)
.

It is easy to notice that under assumptions imposed on Q1, Q2 and g there exists
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a function M : I → R such that all assumptions (A1)–(A2) are satisfied. Next, (A3) is
satisfied if we put

A := max {|Q1(t, τ)| , |(Q1)t (t, τ)| : (t, τ) ∈ P4}

and C := A/α, where α > 0 is a constant satisfying the inequality xTQ2x ≥ α |x|,
x ∈ Rn. As a result, we get, applying Theorem 3.4, that system (1.1) has the following
properties:

1. for any u ∈ L∞
(
I,Rk

)
there exists a unique solution xu ∈ H̄1(I,Rn) to (1.1), in

particular x is absolutely continuous, x (0) = 0 and ẋ ∈ L2(I,Rn),
2. the solution xu depends continuously on the parameter u ∈ U ,
3. the operator

U 3 u 7→ xu ∈ H̄1(I,Rn)

is well possed, and continuously (in the Fréchet sense) differentiable.

Example 4.2. Consider the classical Cauchy problem with a parameter u of the form

ẋ = f (t, x, u) (4.1)
x (0) = 0. (4.2)

We say that for a given parameter u a function x : I → Rn, where n ≥ 1 and I := [0, 1]
solves problem (4.1)–(4.2) if it satisfies equation (4.1) for almost every t ∈ I and
x (0) = 0. Therefore, we look for solutions in the space of absolutely continuous
functions x : I → Rn such that x (0) = 0 and the derivative ẋ is a square integrable
function, i.e. ẋ ∈ L2(I,Rn).We assume that the parameter u ∈ L∞

(
I,Rk

)
with k ≥ 1.

In a standard manner we transform problem (4.1)–(4.2) to the following integral
problem

x(t) =
t∫

0

f (s, x(s), u (s)) ds. (4.3)

Our goal is to apply Theorem 3.4 to the above problem. We assume that

(1) the function f (τ, ·, ·) is continuous on the set G := Rn × Rk for a.e. τ ∈ I; there
are continuous derivatives fx (τ, ·, ·) , fu (τ, ·, ·) are continuous on G for a.e. τ ∈ I,

(2) the functions f, fx, fu are measurable with respect to τ for (x, u) ∈ Rn × Rk and
locally bounded with respect to x, i.e. for any ρ > 0 and u ∈ U there exists
a function M ∈ L2 (I,R) such that

|f (τ, x, u(τ))| , |fx (τ, x, u(τ))| , |fu (τ, x, u(τ))| ≤M(τ)

and |x| ≤ ρ and a.e. τ ∈ I.
(3) for any u ∈ L∞

(
I,Rk

)
there exist a constant C > 0 and a function B1 ∈ L2 (I,R+)

such that
|f (t, x, u(t))| ≤ C |x|+B1(t).
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Applying Theorem 3.4, we get that for any u ∈ L∞
(
I,Rk

)
there exists a unique

solution xu to (4.3), and consequently to (4.1)–(4.2), which depends continuously on u.
It should be noticed that the solution xu is a global solution, that it is defined on the
whole interval I.

The classical result for the existence of solution to (4.1)–(4.2) requires assumptions
of Lipschitz continuity of f with respect to x (for the existence and uniqueness of a local
solution) and sublinearity of f for the global solution. For the continuous dependence
it is usually assumed that f is Lipschitz continuous with respect to (x, u) and f is
smooth with respect to (x, u) for the smooth dependence. To sum up, assumptions
(1)–(3) for f are comparable with classical ones.
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