PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Forced motion CFD simulation and load refinement evaluation of floating vertical-axis tidal current turbines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Simulation of the hydrodynamic performance of a floating current turbine in a combined wave and flow environment is important. In this paper, ANSYS-CFX software is used to analyse the hydrodynamic performance of a vertical-axis turbine with various influence factors such as tip speed ratio, pitching frequency and amplitude. Time-varying curves for thrust and lateral forces are fitted with the least squares method; the added mass and damping coefficients are refined to analyse the influence of the former factors. The simulation results demonstrate that, compared with nonpitching and rotating turbines under constant inflow, the time-varying load of rotating turbines with pitching exhibits an additional fluctuation. The pitching motion of the turbine has a positive effect on the power output. The fluctuation amplitudes of thrust and lateral force envelope curves have a positive correlation with the frequency and amplitude of the pitching motion and tip speed ratio, which is harmful to the turbine’s structural strength. The mean values of the forces are slightly affected by pitching frequencies and amplitudes, but positively proportional to the tip speed ratio of the turbine. Based upon the least squares method, the thrust and lateral force coefficients can be divided into three components, uniform load coefficient, added mass and damping coefficients, the middle one being significantly smaller than the other two. Damping force plays a more important role in the fluctuation of loads induced by pitching motion. These results can facilitate study of the motion response of floating vertical-axis tidal current turbine systems in waves.
Rocznik
Tom
Strony
40--49
Opis fizyczny
Bibliogr. 20 poz. rys., tab
Twórcy
  • iangsu University of Science and Technology, No.2 Mengxi Road, 212000 Zhenjaing, China
autor
  • Jiangsu University of Science and Technology, Mengxi Road, 212000 Zhenjiang, China
autor
  • Wuhan Second Ship Design & Research Institute, 450 Zhongshan Road, 430064 Wuhan, China
autor
  • Jiangsu University of Science and Technology, Mengxi Road, 212000 Zhenjiang, China
Bibliografia
  • 1. Chowdhury A. M., Akimoto H., Hara Y. (2016): Comparative CFD analysis of vertical axis wind turbine in upright and tilted configuration. Renewable Energy, Vol. 85(1), 327–337.
  • 2. Dai J., Shan Z. D., Wang X. F. (2010): Current research progress of water turbine. Renewable Energy, Vol. 28(4), 130–133.
  • 3. Galloway P. W., Myers L. E., Bahaj A. S. (2010): Studies of a scale tidal turbine in close proximity to waves. In: Third International Conference and Exhibition on Ocean Energy, Bilbao, Spain, 6–8 Oct, 2010.
  • 4. Li B. Y., Karri N., Wang Q. (2014): Three-dimensional numerical analysis on blade response of a vertical-axis tidal current turbine under operational conditions. Journal of Renewable and Sustainable Energy, Vol. 6(4), 043123.
  • 5. Li G. N., Chen Q. R., Gu H. B. (2018): An unsteady boundary element model for hydrodynamic performance of a multiblade vertical-axis tidal turbine. Water, Vol. 10, 1413.
  • 6. Li G. N., Chen Q. R., Gu H. B. (2018): Study of hydrodynamic interference of vertical-axis tidal turbine array. Water, Vol. 10, 1228.
  • 7. Li G. N., Chen Q. R., et al. (2020): Study on hydrodynamic configuration parameters of vertical-axis tidal turbine. Polish Maritime Research, Vol. 27(1): 8–15.
  • 8. Li Y., Calisal S. M. (2011): Modeling of twin-turbine systems with vertical axis tidal current turbines: Part I—Power output. Ocean Engineering, Vol. 37(7), 627–637.
  • 9. Li Y., Calisal S. M. (2011): Modeling of twin- turbine systems with vertical axis tidal current turbines: Part II—Torque fluctuation. Ocean Engineering, Vol. 38(4), 550–558.
  • 10. Li Z. C. (2011): Numerical Simulation and Experimental Study on Hydrodynamic Characteristic of Vertical Axis Tidal Turbine. Doctoral thesis, Harbin Engineering University, (in Chinese).
  • 11. Menter F. R. (1994): Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, Vol. 32(8), 1598–1605.
  • 12. Ponta F., Dutt G. S. (2000): An improved vertical axis water current turbine incorporating a channeling device. Renewable Energy, Vol. 20(2), 223–241.
  • 13. Ponta F. L., Jacovkis P. M. (2011): A vortex model for Darrieus turbine using finite element techniques. Renewable Energy, Vol. 24(1), 1–18.
  • 14. Scheurich, F., Brown, R. E. (2011): Vertical-axis wind turbines in oblique flow: sensitivity to rotor geometry. In: European Wind Energy Conference and Exhibition Brussels, Belgium, 14–17 Mar, 2011.
  • 15. Shiono M., Suzuki K., Kiho S. (2002): Output characteristics of Darrieus water turbine with helical blades for tidal current generations. In: Proceedings of 12th International Offshore and Polar Engineering Conference, Kitakyushu, Japan, 26–31 May, 2002.
  • 16. Tomporowski A., Al-Zubiedy A., et al. (2019): Analysis of the project of innovative floating turbine. Polish Maritime Research, Vol. 26(4): 124–133.
  • 17. Wang S., Yuan P., Li D., Jiao Y. (2011): An overview of ocean renewable energy in China. Renewable and Sustainable Energy Reviews, Vol. 15(1), 91–111.
  • 18. Wang S. Y., Derek B. I., Ma L., Pourkashanian M., Tao Z. (2012): Turbulence modeling of deep dynamic stall at relatively low Reynolds number. Journal of Fluids and Structures, Vol. 33(8), 191–209.
  • 19. Yang B., Lawn C. (2011): Fluid dynamic performance of a vertical axis turbine for tidal currents. Renewable Energy, Vol. 36(12), 3355–3366.
  • 20. Zhang Z. Y., Ma Y., et al. (2017): 3-D simulation of verticalaxial tidal current turbine. Polish Maritime Research, Vol. 23(4): 73–83.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-96cd2394-be62-49c6-a40f-dbab273dd5ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.