PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Triangular fuzzy-rough set based fuzzification of fuzzy rule-based systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In real-world approximation problems, precise input data are economically expensive. Therefore, fuzzy methods devoted to uncertain data are in the focus of current research. Consequently, a method based on fuzzy-rough sets for fuzzification of inputs in a rulebased fuzzy system is discussed in this paper. A triangular membership function is applied to describe the nature of imprecision in data. Firstly, triangular fuzzy partitions are introduced to approximate common antecedent fuzzy rule sets. As a consequence of the proposed method, we obtain a structure of a general (non-interval) type-2 fuzzy logic system in which secondary membership functions are cropped triangular. Then, the possibility of applying so-called regular triangular norms is discussed. Finally, an experimental system constructed on precise data, which is then transformed and verified for uncertain data, is provided to demonstrate its basic properties.
Rocznik
Strony
271--285
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
  • Department of Computational Intelligence, Czestochowa University of Technology, al. Armii Krajowej 36, 42-200 Częstochowa, Poland
  • Information Technology Institute, University of Social Sciences, 90-113 Łódz and Clark University Worcester, MA 01610, USA
  • Department of Computer, Control and Management Engineering, Sapienza University of Rome Via Ariosto 25 Roma 00185, Italy
Bibliografia
  • [1] Almohammadi, K., Hagras, H., Alghazzawi, D., and Aldabbagh, G. Users-centric adaptive learning system based on interval type-2 fuzzy logic formassively crowded e-learning platforms. Journal of Artificial Intelligence and Soft Computing Research 6, 2 (2016), 81–101.
  • [2] Ferdaus, M. M., Anavatti, S. G., Garratt, M. A., and Pratam, M. Development of c-means clustering based adaptive fuzzy controller for a flapping wing micro air vehicle. Journal of Artificial Intelligence and Soft Computing Research 9, 2 (2019), 99–109.
  • [3] Greenfield, S., and Chiclana, F. Accuracy and complexity evaluation of defuzzification strategies for the discretised interval type-2 fuzzy set. International Journal of Approximate Reasoning 54, 8 (Oct 2013), 1013–1033.
  • [4] Greenfield, S., Chiclana, F., Coupland, S., and John, R. The collapsing method of defuzzification for discretised interval type-2 fuzzy sets. Information Sciences 179, 13 (2009), 2055–2069.
  • [5] Han, Z.-q., Wang, J.-q., Zhang, H.-y., and Luo, X.-x. Group multi-criteria decision making methodwith triangular type-2 fuzzy numbers. InternationalJournal of Fuzzy Systems 18, 4 (Aug 2016), 673–684.
  • [6] Karnik, N. N., and Mendel, J. M. Centroid of a type-2 fuzzy set. Information Sciences 132 (2001), 195–220.
  • [7] Karnik, N. N., Mendel, J. M., and Liang, Q. Type-2 fuzzy logic systems. IEEE Transactions on FuzzySystems 7, 6 (1999), 643–658.
  • [8] Liu, F. An efficient centroid type-reduction strategy for general type-2 fuzzy logic system. Information Sciences 178, 9 (2008), 2224–2236.
  • [9] Maowen Nie, and Woei Wan Tan. Towards an efficient type-reduction method for interval type2 fuzzy logic systems. In 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence) (2008), pp. 1425–1432.
  • [10] Melgarejo, M. A fast recursive method to compute the generalized centroid of an interval type-2 fuzzy set. In Proc. NAFIPS 2007 (2007), pp. 190–194.
  • [11] Mendel, J. M., and Liu, X. Simplified interval type2 fuzzy logic systems. IEEE Transactions on Fuzzy Systems 21, 6 (2013), 1056–1069.
  • [12] Mizumoto, M., and Tanaka, K. Some properties of fuzzy sets of type-2. Information and Control 31 (1976), 312–340.
  • [13] MonirVaghefi, H., Rafiee Sandgani, M., and Aliyari Shoorehdeli, M. Interval type-2 adaptive network-based fuzzy inference system (anfis) with type-2 non-singleton fuzzification. In 2013 13th Iranian Conference on Fuzzy Systems (IFSC) (2013), pp. 1–6.
  • [14] Monirvaghefi, H., and Shoorehdeli, M. A. Modelbased fault detection of a nonlinear system using interval type-2 fuzzy systems with non-singleton type-2 fuzzification. In The 3rd International Conference on Control, Instrumentation, and Automation (2013), pp. 231–236.
  • [15] Mouzouris, G. C., and Mendel, J. M. Nonsingleton fuzzy logic systems: theory and application. IEEE Transactions on Fuzzy Systems 5, 1 (1997), 56–71.
  • [16] Nakamura, A. Fuzzy rough sets. Note on MultipleValued Logic in Japan 9, 8 (1988), 1–8.
  • [17] Nowicki, R. K., and Starczewski, J. T. A new method for classification of imprecise data using fuzzy rough fuzzification. Information Sciences 414 (2017), 33–52.
  • [18] Pekaslan, D., Wagner, C., and Garibaldi, J. M. Leveraging it2 input fuzzy sets in non-singleton fuzzy logic systems to dynamically adapt to varying uncertainty levels. In 2019 IEEE International Conference on Fuzzy Systems (FUZZIEEE) (2019), pp. 1–7.
  • [19] Pourabdollah, A., John, R., and Garibaldi, J. M. A new dynamic approach for non-singleton fuzzification in noisy time-series prediction. In 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (2017), pp. 1–6.
  • [20] Rojas, J. D., Salazar, O., and Serrano, H. Nie-Tan Method and its Improved Version: A Counterexample. IngenierÃa 21 (08 2016), 138 – 153.
  • [21] Ruiz, G., Pomares, H., Rojas, I., and Hagras, H. The non-singleton fuzzification operation for general forms of interval type-2 fuzzy logic systems. In 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (2017), pp. 1–6.
  • [22] Sadiqbatcha, S., Jafarzadeh, S., and Ampatzidis, Y. Particle swarm optimization for solving a class of type-1 and type-2 fuzzy nonlinear equations. Journal of Artificial Intelligence and Soft Computing Research 8, 2 (2018), 103–110.
  • [23] Sahab, N., and Hagras, H. An adaptive type-2 input based nonsingleton type-2 fuzzy logic system for real world applications. In 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011) (2011), pp. 509–516.
  • [24] Starczewski, J. T. Efficient triangular type-2 fuzzy logic systems. International Journal of Approximate Reasoning 50 (2009), 799–811.
  • [25] Starczewski, J. T. Extended triangular norms. Information Sciences 179 (2009), 742–757.
  • [26] Starczewski, J. T. General type-2 FLS with uncertainty generated by fuzzy rough sets. In Proc. IEEE-FUZZ 2010 (Barcelona, 2010), pp. 1790–1795.
  • [27] Starczewski, J. T. Advanced Concepts in Fuzzy Logic and Systems with Membership Uncertainty, vol. 284 of Studies in Fuzziness and Soft Computing. Springer, 2013.
  • [28] Starczewski, J. T. Centroid of triangular and Gaussian type-2 fuzzy sets. Information Sciences 280 (2014), 289–306.
  • [29] Starczewski, J. T., Nowicki, R. K., and Nieszporek, K. Fuzzy-rough fuzzification in general FL classifiers. In Proceedings of the 11th International Joint Conference on Computational Intelligence, IJCCI 2019, Vienna, Austria, September 17-19, 2019 (2019), J. J. M. Guervós, J. Garibaldi, A. Linares-Barranco, K. Madani, and K. Warwick, Eds., ScitePress, pp. 335–342.
  • [30] Wu, D., and Mendel, J. M. Enhanced karnikmendel algorithms. IEEE Transactions on Fuzzy Systems 17, 4 (2009), 923–934.
  • [31] Wu, D., and Tan, W. Computationally efficient type-reduction strategies for a type-2 fuzzy logic controller. In Proc. IEEE Fuzzy Conference (Reno, NV, 2005), pp. 353–358.
  • [32] Zadeh, L. A. The concept of a linguistic variable and its application to approximate reasoning — I. Information Sciences 8 (1975), 199–249.
  • [33] Zhai, D., and Mendel, J. M. Centroid of a general type-2 fuzzy set computed by means of the centroid flow algorithm. In Proc. IEEE-FUZZ 2010 (Barcelona, 2010), pp. 1–8.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-96c28943-d6e2-4cf2-900b-972ad66918e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.