Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this study was to reveal the first time synergistic effect of GP and selenium (Se) on 3T3 cells seeded on natural and non-cytotoxic porous scaffolds with poly(vinyl alcohol) (PVA) and gelatin (GE). Methods: Electrospinning scaffolds were produced as PVA/GE/GA crosslinked with glutaraldehyde (GA) and freeze/dried scaffolds crosslinked with genipin (GP) were divided into two groups as PVA/GE/GP5 and PVA/GE/GP8. The scaffolds were investigated in terms of pore morphology, swell ratio, biodegradation, and biocompatibility. The biocompatibility of the material was tested in vitro by MTT assay on 1, 2, and 3 days to test the cell viability of 3T3 cells. Results: It was observed that Se triggered the excellent cell growth and proliferation on electrospinning and freeze drying PVA/GE scaffolds. Conclusions: Selenium with PVA/GE scaffolds can be a promising candidate for wound healing application, as it significantly increases cell viability on scaffolds. It is thought that the synergistic effect of selenium with genipin may be an important step in tissue engineering applications. The preliminary study can be supported by in vivo studies in the future.
Czasopismo
Rocznik
Tom
Strony
179--190
Opis fizyczny
Bibliogr. 45 poz., rys., wykr.
Twórcy
autor
- Department of Biophysics, Istanbul University, Istanbul Faculty of Medicine, Fatih, Istanbul, Turkey.
- Department of Computer Technologies, Biruni University, Vocational School, Topkapi, Istanbul, Turkey.
autor
- Department of Chemical Engineering, Istanbul University, Cerrahpasa, Chemical Engineering, Avcilar, Istanbul, Turkey.
autor
- Department of Chemical Engineering, Istanbul University, Cerrahpasa, Chemical Engineering, Avcilar, Istanbul, Turkey.
autor
- Department of Biophysics, Istanbul University, Istanbul Faculty of Medicine, Fatih, Istanbul, Turkey.
Bibliografia
- [1] ABRIGO M., MCARTHUR S.L., KINGSHOTT P., Electrospun nanofibers as dressings for chronic wound care: Advances, challenges, and future prospects, Macromolecular Bioscience, 2014, 14, 772–792.
- [2] ARAMWIT P., SIRITIENTONG T., KANOKPANONT S. et al., Formulation and characterization of silk sericin-PVA scaffold crosslinked with genipin, Int. J. Biol. Macromol., 2010, 47, 668–675.
- [3] BUTLER M.F., NG Y.F., PUDNEY P.D.A., Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin, J. Polym. Sci. Part A Polym. Chem., 2003, 41, 3941–3953.
- [4] CHANG W.H., CHANG Y., LAI P.H. et al., A genipin-crosslinked gelatin membrane as wound-dressing material: In vitro and in vivo studies, J. Biomater. Sci. Polym. Ed., 2003, 14, 481–495.
- [5] CHEN K.Y., LIAO W.J., KUO S.M., TSAI F.J., CHEN Y.S., HUANG C.Y. et al., Asymmetric chitosan membrane containing collagen I nanospheres for skin tissue engineering, Biomacromolecules, 2009, 10, 1642–1649.
- [6] CHOI S.M., SINGH D., KUMAR A. et al., Porous threedimensional PVA/gelatin sponge for skin tissue engineering, Int. J. Polym. Mater. Polym. Biomate., 2013, 62, 384–389.
- [7] GANTHER H.E., HAFEMAN D.G., LAWRENCE R.A. et al., Selenium and Glutathione Peroxidase in Health and Disease, Essential and Toxic Element, 1976, 71, 952–958.
- [8] GOPEE N.V., JOHNSON V.J., SHARMA R.P., Sodium selenite-induced apoptosis in murine B-lymphoma cells is associated with inhibition of protein kinase C-δ, nuclear factor κB, and inhibitor of apoptosis protein, Toxicol. Sci., 2004, 78, 204–214.
- [9] GORCZYCA G., TYLINGO R., SZWEDA P., AUGUSTIN E., SADOWSKA M., MILEWSKI S., Preparation and characterization of genipin cross-linked porous chitosan-collagen-gelatin scaffolds using chitosan-CO2 solution, Carbohydr. Polym., 2014, 901–911.
- [10] GUAN L., HAN B., LI Z. et al., Sodium selenite induces apoptosis by ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction in human acute promyelocytic leukemia NB4 cells, Apoptosis, 2009, 14, 218–225.
- [11] GUO S., DIPIETRO L.A., Critical review in oral biology and medicine: Factors affecting wound healing, J. Dent. Res., 2010, 89, 219–229.
- [12] HAYASHI Y., FURUE M.K., OKAMOTO T. et al., Integrins Regulate Mouse Embryonic Stem Cell Self-Renewal, Stem Cells, 2007, 25, 3005–3015.
- [13] HUANG C.Y., HU K.H., WEI Z.H., Comparison of cell behawior on pva/pva-gelatin electrospun nanofibers with random and aligned configuration, Sci. Rep., 2016, 6, 37960.
- [14] KOBIELARZ M., TOMANIK M., MROCZKOWSKA K., SZUSTAKIEWICZ K., ORYSZCZAK M., MAZUR A., ANTOŃCZAK A., FILIPIAK J., Laser-modified PLGA for implants: in vitro degradation and mechanical properties, Acta of Bioengineering and Biomechanics, 2020, Vol. 22, No. 1.
- [15] LANGER R., VACANTI J.P., Tissue engineering, Science (80-), 1993, 260, 920–926.
- [16] MAHNAMA H., DADBIN S., FROUNCHI M. et al., Preparation of biodegradable gelatin/PVA porous scaffolds for skin regeneration, Artif Cells, Nanomedicine Biotechnol., 2017, 45, 928–935.
- [17] MALAFAYA P.B., SILVA G.A., REIS R.L., Natural-origin polymers as carriers and scaffolds for biomolecules and cel delivery in tissue engineering applications, Adv. Drug. Deliv. Rev., 2007, 59, 207–233.
- [18] MEKHAIL M., WONG K.K.H., PADAVAN D.T. et al., Genipincross-linked electrospun collagen fibers, J. Biomater. Sci. Polym. Ed., 2011, 22, 2241–2259.
- [19] MCKEEHAN W.L., HAMILTON W.G., HAM R.G., Selenium is an essential trace nutrient for growth of WI-38 diploid human fibroblasts, Proc. Natl. Acad. Sci. USA, 1976, 73, 2023–2027.
- [20] MIRZAEI E., FARIDI-MAJIDI R., SHOKRGOZAR M.A. et al., Genipin cross-linked electrospun chitosan-based nanofibrous mat as tissue engineering scaffold Genipin cross-linked chitosan nanofibrous scaffold, Nanomed. J., 2014, 1, 37–146.
- [21] MU C., ZHANG K., LIN W., LI D., Ring-opening polymerization of genipin and its long-range crosslinking effect on collagen hydrogel, J. Biomed. Mater. Res. – Part A, 2013, 101, 385–393.
- [22] NATHAN C., XIE Q.W., Regulation of biosynthesis of nitric oxide, Journal of Biological Chemistry, 1994, 13725–13728.
- [23] NGUYEN T.H., VENTURA R., MIN Y.K. et al., Genipin Cross-Linked Polyvinyl Alcohol-Gelatin Hydrogel for Bone Regeneration, J. Biomedical Science and Engineering, 2016, 9, 419–429, 28.
- [24] NYAMBAT B., MANGA Y.B., CHEN C.H., GANKHUYAG U., ANDI PRATOMO W.P., SATAPATHY M.K. et al., New insight into natural extracellular matrix: Genipin cross-linked adipose derived stem cell extracellular matrix gel for tissue engineering, Int. J. Mol. Sci., 2020, 21, 4864.
- [25] PAPP L.V., LU J., HOLMGREN A. et al., From selenium to selenoproteins: Synthesis, identity, and their role in human health, Antioxidants and Redox Signaling, 2007, 775–806.
- [26] PILEHVAR-SOLTANAHMADI Y., DADASHPOUR M., MOHAJERI A. et al., An Overview on Application of Natural Substances Incorporated with Electrospun Nanofibrous Scaffolds to Development of Innovative Wound Dressings Mini-Reviews, Med. Chem., 2018, 18, 414–427.
- [27] RAYMAN M.P., The argument for increasing selenium intake, Proc. Nutr. Soc., 2002, 61, 203–215.
- [28] REVERCHON E., CARDEA S., RAPUANO C., A new supercritical fluid-based process to produce scaffolds for tissue replacement, J. Supercrit. Fluids, 2008, 5, 365–373.
- [29] RIEGER K.A., BIRCH N.P., SCHIFFMAN J.D., Designing electrospun nanofiber mats to promote wound healing-a review, Journal of Materials Chemistry B, 2013, 1, 4531–4541.
- [30] SARAL Y., UYAR B., AYAR A. et al., Protective effects of topical alpha-tocopherol acetate on UVB irradiation in guinea pigs: Importance of free radicals, Physiol. Res., 2002, 51, 285–290.
- [31] SONG H., KIM J., LEE H.K. et al., Selenium inhibits migration of murine melanoma cells via down-modulation of IL-18 expression, Int. Immunopharmacol., 2011, 9, 236–242.
- [32] SUBRAMANIAN A., KRISHNAN U.M., SETHURAMAN S., Fabrication, characterization and in vitro evaluation of aligned PLGA-PCL nanofibers for neural regeneration, Ann. Biomed. Eng., 2012, 40, 2098–2110.
- [33] SUNDARAMURTHI D., KRISHNAN U.M., SETHURAMAN S., Electrospun nanofibers as scaffolds for skin tissue engineering, Polymer Reviews, 2014, 54, 348–376.
- [34] U_UZ A.C., NAZIRO_LU M., ESPINO J. et al., Selenium modulates oxidative stress-induced cell apoptosis in human myeloid HL-60 cells through regulation of calcium release and caspase-3 and -9 activities, J. Membr. Biol., 2009, 232, 15–23.
- [35] YANG C., WU X., ZHAO Y. et al., Nanofibrous scaffold prepared by electrospinning of poly(vinyl alcohol)/gelatin aqueous solutions, J. Appl. Polym. Sci., 2011, 121, 3047–3055.
- [36] YAN L.P., WANG Y.J., REN L., WU G., CARIDADE S.G., FAN J.B. et al., Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications, J. Biomed. Mater. Res. – Part A, 2010, 95, 465– 475.
- [37] YANG S.F., LEONG K.F., DU H. et al., The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques, Tissue Eng., 2002, 1, 1–11.
- [38] YÜKSEL E., NAZIROĞLU M., ŞAHIN M., ÇIĞ B., Involvement of TRPM2 and TRPV1 channels on hyperalgesia, apoptosis and oxidative stress in rat fibromyalgia model: Protective role of selenium, Scientific Reports OPEN, 2017, 7–17543.
- [39] ZHANG B., CU Y., YIN G. et al., Synthesis and swelling properties of hydrolyzed cottonseed protein composite superabsorbent hydrogel, Int. J. Polym. Mater. Polym. Biomater., 2010, 59, 1018–1032.
- [40] ZHAOA X., SUN X., YILDIRIMERA L., LANGA Q., YUAN Z.L., ZHENGA R., ZHANGH Y., CUIA W., ANNABIA N., KHADEMHOSSEINIA A., Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing, Acta Biomater., 2017, 49, 66–77.
- [41] ZHONG S.P., ZHANG Y.Z., LIM C.T., Tissue scaffolds for skin wound healing and dermal reconstruction, Wiley Interdisciplinary Reviews, Nanomedicine and Nanobiotechnology, 2010, 2, 510–525.
- [42] ZHANG Y.Z., VENUGOPAL J., HUANG Z.M., LIM C.T., RAMAKRISHNA S., Crosslinking of the electrospun gelatin nanofibers, Polymer (Guildf), 2006, 47, 2911–2917.
- [43] ZHOU Y., YANG D., CHEN X. et al., Electrospun water-soluble carboxyethyl chitosan/poly(vinyl alcohol) nanofibrous membranę as potential wound dressing for skin regeneration, Biomacromolecules, 2008, 1, 349–354.
- [44] XIAO J., DUAN H., LIU Z. et al., Construction of the recellularized corneal stroma using porous acellular corneal scaffold, Biomaterials, 2011, 32:6962–71.
- [45] WALDECK H., CHUNG A.S., KAO W.J., Interpenetrating polymer networks containing gelatin modified with PEGylated RGD and soluble KGF: Synthesis, characterization, and application in in vivo critical dermal wound, J. Biomed. Mater. Res. – Part A, 2007, 82, 861–871.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-96c1c25e-8458-412b-95ac-d0b6173ac7c3