PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Monte-Carlo simulations of a neutron source based on a linear electron accelerator

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Neutron beams are employed in a multitude of applications, including neutron activation analysis, neutron radiography and tomography, nuclear waste assays, reactor start-up sources, studies of material response, geological analysis, calibration standards and cancer therapy. The global demand for access to neutron beams is increasing, necessitating the development of relatively simple, efficient and easy-to-use neutron sources to address the more complex challenges of scientific research and industrial application. One relatively readily available method is to use a linear electron accelerator to produce beams of fast neutrons. The neutron generator, comprising of an electron linear accelerator and a tungsten X-ray converter, is capable of producing a maximum neutron flux of 1.53·1010 n/s to 1.45·1013 n/s at electron energies of 10–50 MeV, with an average electron beam current of 120 miA, corresponding to an intensity of 7.5·1014 e/s. The results of the neutron generator modelling conducted with the FLUKA Monte-Carlo code are presented in this article for an equivalent incident beam power of 1.2–6.0 kW. The optimal tungsten converter thickness is proposed as a means of achieving the maximum neutron flux in all directions.
Czasopismo
Rocznik
Strony
3--10
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
  • National Centre for Nuclear Research Andrzeja Sołtana St. 7, 05-400 Otwock-Świerk, Poland
  • National Centre for Nuclear Research Andrzeja Sołtana St. 7, 05-400 Otwock-Świerk, Poland
Bibliografia
  • 1. Knoll, G. F. (1985). Radioisotope neutron sources characteristics and applications. Vienna: International Atomic Energy Agency. (IAEA-TECDOC-351).
  • 2. Mohamed, G. Y., Fayez-Hassan, M., Abd-El-Wahab, M., Aziz, M., & Ali, M. A. (2010). Radio-isotopic neutron sources for industrial applications and basic research. In Proceeding of the 2nd International Conference on Radiation Sciences and Application, 28.03.–01.04.2010 (pp. 235–240). Marsa Alam, Egypt. https://inis.iaea.org/collection/NCLCollectionStore/_Public/41/061/41061854.pdf?r=1.
  • 3. Steiner, D. E., Cheng, E., Miller, R., Petti, D., Tillack, M., Waganer, L., & the ARIES Team. (2000). The ARIES fusion neutron-source study. (UCSDENG-0083). http://qedfusion.org/LIB/REPORT/ARIES-MISC/FNS-fi nal.pdf.
  • 4. Kouzes, R. T. (2005). Detecting illicit nuclear materials: The installation of radiological monitoring equipment in the United States and overseas is helping thwart nuclear terrorism. Am. Scientist, 93(5), 422–427.
  • 5. Vega-Carrillo, H. R., & Martinez-Ovalle, S. A. (2016). Few groups neutron spectra, and dosimetric features, of isotopic neutron sources. Appl. Radiat. Isot., 117, 42–50. https://doi.org/10.1016/j.apradiso.2016.03.027.
  • 6. Martin, R. C., Knauer, J. B., & Balo, P. A. (2000). Production, distribution and applications of californium-252 neutron sources. Appl. Radiat. Isot., 53(4/5), 785–792. https://doi.org/10.1016/S0969-8043(00)00214-1.
  • 7. Yun, S., Lee, C. W., Lee, D. W., Kim, S. -H., Jung, B.,Chang, D. -H., Jin, H. G., & Shin, C. W. (2019). An optimization study for shielding design of D-D and D-T neutron generators. Fusion Eng. Des., 146, 531.
  • 8. Neutron Science Directorate. Oak Ridge National Laboratory. https://neutrons.ornl.gov/sns.
  • 9. European Spallation Source. https://europeanspallationsource.se.
  • 10. Anderson, I. S., Andreani, C., Carpenter, J. M., Festa, G., Gorini, G., Loong, C. -K., & Senesi, R. (2016). Research opportunities with compact accelerator-driven neutron sources. Phys. Rep., 654, 1–58. https://doi.org/10.1016/j.physrep.2016.07.007.
  • 11. Gibbons, J. H., Macklin, R. L., Marion, J. B., & Schmitt, H. W. (1959). Precision measurement of the Be9 (γ,n) cross section. Phys. Rev., 114, 1319–1323.
  • 12. John, W., & Prosser, J. M. (1962). Photodisintegration cross section of beryllium near threshold. Phys. Rev., 127, 231–235.
  • 13. Kneissl, U., Kuhl, G., Leister, K. -H., & Weller, A. (1975). Photoneutron cross section for 9 Be obtained with quasi-monoenergetic photons. Nucl. Phys. A, 247, 91–102.
  • 14. Berger, J. M. (1957). Computation of nonrelativistic electron bremsstrahlung. Phys. Rev., 105, 35–38.
  • 15. Haug, E. (2003). Photon energy spectrum of electron–positron bremsstrahlung in the center-of-mass system. Eur. Phys. J. C, 31, 365–369.
  • 16. Haug, E. (2003). Proton-electron bremsstrahlung. Astron. Astrophys., 406, 31–35.
  • 17. Akkurt, I., Adler, J. -O., Annand, J. R. M., Fasolo, F., Hansen, K., Isaksson, L., Karlsson, M., Lilja, P., Lundin, M., Nilsson, B., Ongaro, C., Reiter, A., Rosner, G., Sandell, A., Schröder, B., & Zanini, A. (2003). Photoneutron yields from tungsten in the energy range of the giant dipole resonance. Phys. Med. Biol., 48, 3345–3352.
  • 18. Dale, G. E., & Gahl, J. M. (2002). Preliminary modeling results of a thermal neutron source driven with electron linac. In 14th International Conference on High-Power Particle Beams, 23–28 June 2002 (pp. 369–372). Albuquerque, New Mexico, United States: IEEE. DOI: 10.1063/1.1530875.
  • 19. Konefał, A., Dybek, M., Zipper, W., Łobodziec, W., & Szczucka, K. (2005). Thermal and epithermal neutrons in the vicinity of the Primus Siemens biomedical accelerator. Nukleonika, 50(2), 73–81.
  • 20. Das, N. Kr., & Chatterjee, S. (2020). Optimization calculations for neutron production target at Variable Energy Cyclotron Centre, Kolkata with 50 MeV electron linear accelerator. Current Science, 119, 1499–1502.
  • 21. Kosako, K., Oishi, K., Nakamura, T., Takada, M., Sato, K., Kamiyama, T., & Kiyanagi, Y. (2011). Angular distribution of photoneutrons from copper and tungsten targets bombarded by 18, 28, and 38 MeV electrons. J. Nucl. Sci. Technol., 48, 227–236.
  • 22. Wasilewski, A., & Wronka, S. (2006). Monte-Carlo simulations of a neutron source generated with electron linear accelerator. Nukleonika, 51(3), 169–173.
  • 23. Blokhin, A., Chadwick, M., Fukahori, T., Han, Y., Lee, Y. -O., Martins, M., Mughabhab, S. F., Oblosinsky, P., Varlamov, V., Yu, B., & Zhang, J. (2000). Handbook on photonuclear data for applications, cross sections 10 A. Wasilewski, S. Wronka and spectra. Vienna: International Atomic Energy Agency. (IAEA-TECDOC-1178).
  • 24. Böhlen, T. T., Cerutti, F., Chin, M. P. W., Fassò, A., Ferrari, A., Ortega, P. G., Mairani, A., Sala, P. R., Smirnov, G., & Vlachoudis, V. (2014). The FLUKA code: Developments and challenges for high Energy and medical applications. Nucl. Data Sheets, 120, 211–214.
  • 25. Ferrari, A., Sala, P. R., Fassò, A., & Ranft, J. (2005). FLUKA: a multi-particle transport code. CERN: Geneva. (CERN-2005-10, INFN/TC_05/11, SLACR-773).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-96be9f23-17e5-4d9f-808a-e79cdf7a4a1e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.