PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The use of artificial neural networks for the prediction of sulphur content in hot metal produced in blast furnace

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The paper presents the possibilities of using artificial intelligence for the prediction of sulphur content in hot metal produced in blast furnace. Design/methodology/approach: Three blast furnaces in ArcelorMittal, Unit in Dąbrowa Górnicza, provided the data for the model construction. The data reflect a number of variables, which describe the blast furnace process. Findings: Materials research performed with the use of data mining and neural networks is consistent with the results obtained during the real research in a real laboratory. The obtained results show that the construction of such neural networks is practical. There is a strong correlation between predicted value and real value. Practical implications: The presented model can be used in the industrial practice as an additional tool for blast furnace and steel plant operators. Originality/value: Prediction of sulphur content in hot metal at the stage of adjusting hot metal process parameters.
Rocznik
Strony
86--92
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • ArcelorMittal Poland S.A., Al. Józefa Piłsudskiego 92, 41-308 Dąbrowa Górnicza, Poland
  • ArcelorMittal Poland S.A., Al. Józefa Piłsudskiego 92, 41-308 Dąbrowa Górnicza, Poland
Bibliografia
  • [1] M.W. Blicharski, Introduction to materials engineering. WNT, Warsaw, 1998 (in Polish).
  • [2] L.A. Dobrzański, Metallic engineering materials, WNT, Warsaw, 2004 (in Polish).
  • [3] T. Diaz de la Rubia, V.V. Bulatov, Materials Research by Means of Multiscale Computer Simulation, MRS Bulletin, 26.03.2001, 169-175.
  • [4] R. Magali, G. Meireles, P.E.M. Almeida, A Comprehensive Review for Industrial Applicability of Artificial Neural Networks, IEEE Transactions on Industrial Electronics 50/3 (2003). 585-601
  • [5] Z. Zhang, K. Friedrich, Artificial neural networks applied to polymer composites: a review, Composites Science and Technology 63 (2003) 2029-2044.
  • [6] D. Mackall, S. Nelson, J. Schumann, Verification and Validation of Neural Networks of Aerospace Applications, Technical Report CR-211409, NASA, 2002.
  • [7] A. Husseina, M. Addab, M. Atieha, W. Fahsb, Smart Home Design for Disabled People based on Neural Networks, Procedia Computer Science 37 (2014) 117-126.
  • [8] N. Sowar, K. Gromley, A sharper view: Analytic in the global steel industry, Deloitte, 2011, 1-13.
  • [9] L.A. Dobrzański, M. Gawron, M. Berliński, The use of artificial neural networks for the prediction of a chemical composition of hot metal produced in blast furnace, Journal of Achievements in Materials and Manufacturing Engineering 67/1 (2014) 32-38.
  • [10] S. Maharana, B. Biswas, A. Ganguly, A. Kumar, Artificial Neural Network Prediction for Coke Strength after Reaction and Data Analysis, World Academy of Science, Engineering and Technology 45 (2010) 556-570.
  • [11] L.A. Dobrzański, R. Honysz, Application of artificial neural networks in modelling of normalized structural steels mechanical properties, Journal of Achievements in Materials and Manufacturing Engineering 32/1 (2009) 37-45.
  • [12] J.A. Burgo, The Manufacture of Pig Iron in the Blast Furnace, The AISE Steel Foundation, Pittsburgh, 1999, 699-740.
  • [13] M. Geerdes, H. Toxopeus, C. van der Vliet, Modern blast furnace ironmaking, Amsterdam, 2009.
  • [14] L. Król, Blast furnace, construction and equipment, Silesian University of Technology Press, 1989 (in Polish).
  • [15] E. Mazanek, L. Król, Blast furnace, technology and practice, "Ślsk" Publishing House, 1969 (in Polish).
  • [16] R. Benesch, J. Janowski, E. Mazanek, Blast furnace process, "Ślsk" Publishing House, 1972 (in Polish).
  • [17] E. Mazanek, W. Sabela, Combustion and heat transfer processes in blast furnace, "Ślsk" Publishing House, 1970 (in Polish).
  • [18] E. Davoodi, A.R. Khanteymoori, Horse Racing Prediction Using Artificial Neural Networks, Recent advances in neural networks, fuzzy systems and evolutionary computing, Romania, 2010, 155-160.
  • [19] D.A. Wahab, L. Amelia, N.K. Hooi, C.H.C. Haron, C.H. Azhari, The application of artificial intelligence in optimisation of automotive components for reuse, Journal of Achievements in Materials and Manufacturing Engineering 31/2 (2008) 595-601.
  • [20] Q.J. Zhang, K.C. Gupta, Neural Networks for RF and Microwave Design, IEEE transactions on microwave theory and techniques 51/4 (2003) 1339-1350.
  • [21] P. Sibi, S. Allwyn Jones, P. Siddarth, Analysis of different activation functions using back propagation neural networks, Journal of Theoretical and Applied Information Technology 47/3 (2013) 1264-1268.
  • [22] J. Konieczny, L.A. Dobrzański, B. Tomiczek, J. Trzaska, Application of the artificial neural networks for prediction of magnetic saturation of metallic amorphous alloys, Journal of Achievements in Materials and Manufacturing Engineering 30/2 (2008) 105-108.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-96bdad16-2b04-4629-80fc-a245ab60a2eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.