PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Developing an empirical model for assessment of total nitrogen inflow to rivers and lakes in the Biebrza river watershed, Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nitrogen load is crucial for its application in various fields such as agriculture and improving water quality control for authorities responsible for establishing agricultural policies in the area. The calculation of nitrogen load using existing equations is not applicable for all types of rivers, thus requiring the development of a new equation that can be applied to lakes and rivers in the Biebrza river catchment. To determine the new equation, extensive mapping of the catchment area was conducted, which was adjusted to precipitation and runoff in the area, allowing the observed results to be compared. Based on several analyses, the new equation has better accuracy, RMSE of the new model-based estimation decreased by 65.9% in 2005–2015 and 62.2% in 2016–2021 for river and 92% in 2008–2019 and 95% in 2020–2021 for lakes. Therefore, the application of the new calibrated empirical model provides results close to the real values and it can be used in the Biebrza river basin to simulate the total nitrogen runoff.
Słowa kluczowe
Rocznik
Strony
201--220
Opis fizyczny
Bibliogr. 44 poz., mapy, tab., wykr.
Twórcy
  • Warsaw University of Life Sciences – SGGW, Institute of Environmental Engineering, Poland
  • Warsaw University of Life Sciences – SGGW, Institute of Environmental Engineering, Poland
  • Warsaw University of Life Sciences – SGGW, Institute of Environmental Engineering, Poland
Bibliografia
  • Almasri, M. N. (2007). Nitrate contamination of groundwater: a conceptual management framework. Environmental Impact Assessment Review, 27 (3), 220-242. https://doi.org/10.1016/j.eiar.2006.11.002
  • Aloui, C., Jammazi, R. & Nguyen, D. K. (2014). A wavelet analysis of the relationship between oil prices and stock prices. Journal of Financial Economics, 111 (1), 1-13.
  • Ávila, J. P. & Sansores, A. C. (2003). Fuentes principales de nitrógeno de nitratos en aguas subterráneas [Main sources of nitrogen from nitrates in groundwater]. Ingeniería, 7 (2), 47-54.
  • Bednarek, A., Szklarek, S. & Zalewski, M. (2014). Nitrogen pollution removal from areas of intensive farming - Comparison of various denitrification biotechnologies. Ecohydrology & Hydrobiology, 14 (2), 132-141. https://doi.org/10.1016/j.ecohyd.2014.01.005
  • Berger, K., Verrelst, J., Féret, J. B., Wang, Z., Wocher, M., Strathmann, M., Danner, M., Mauser, W. & Hank, T. (2020). Crop nitrogen monitoring: Recent progress and principal developments in the context of imaging spectroscopy missions. Remote Sensing of Environment, 242, 111758. https://doi.org/10.1016/j.rse.2020.111758
  • Boyer, E., Goodale, C., Jaworski, N. & Howarth, R. (2002). Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern USA. Biogeochemistry, 57, 137-169. https://doi.org/10.1023/A:1015709302073
  • Cai, D., Wu, Z., Jiang, J., Wu, Y., Feng, H., Brown, I. G., Chu, P. K. & Yu, Z. (2014). Controlling nitrogen migration through micro-nano networks. Scientific Reports, 4 (1), 3665. https://doi.org/10.1038/srep03665
  • Dembicz, I., Kozub, Ł., Bobrowska, I. & Dengler, J. (2020). Photo Story - Grasslands of the mineral islands in the Biebrza National Park, Poland. Palaearctic Grasslands - Journal of the Eurasian Dry Grassland Group, 47, 43–51. https://doi.org/10.21570/EDGG.PG.47.43-51
  • Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. OJ L 327, 22.12.2000.
  • Downing, J. A., Cole, J. J., Middelburg, J. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., Prairie, Y. T. & Laube, K. A. (2008). Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Global Biogeochemical Cycles, 22 (1), 1-10. https://doi.org/10.1029/2006GB002854
  • Duan, W., Takara, K., He, B., Luo, P., Nover, D. & Yamashiki, Y. (2013). Spatial and temporal trends in estimates of nutrient and suspended sediment loads in the Ishikari River, Japan, 1985 to 2010. Science of The Total Environment, 461, 499-508. https://doi.org/10.1016/j.scitotenv.2013.05.022
  • European waters - assessment of status and pressures 2018. EEA Report, 7. https://doi.org/10.2800/303664
  • Grizzetti, B., Pistocchi, A., Liquete, C., Udias, A., Bouraoui, F. & van de Bund, W. (2017). Human pressures and ecological status of European rivers. Scientific Reports, 7 (1), 1-11. https://doi.org/10.1038/s41598-017-00324-3
  • Grizzetti, B., Vigiak, O., Udias, A., Aloe, A., Zanni, M., Bouraoui, F., Pistocchi, A., Dorati, C., Friedland, R., De Roo, A., Benitez Sanz, C., Leip, A. & Bielza, M. (2021). How EU policies could reduce nutrient pollution in European inland and coastal waters. Global Environmental Change, 69, 102281. https://doi.org/10.1016/j.gloenvcha.2021.102281
  • Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E. & Tatham, R. L. (2018). Multivariate data analysis (8th ed.). Boston: Cengage Learning.
  • Knapp, M. F. (2005). Diffuse pollution threats to groundwater: A UK water company perspective. Quarterly Journal of Engineering Geology and Hydrogeology, 38 (1), 39-51. https://doi.org/10.1144/1470-9236/04-015
  • Kutner, M. H., Nachtsheim, C. J., Neter, J. & Li, W. (2005). Applied linear statistical models (5th ed.). New York: McGraw-Hill.
  • Legates, D. R. & McCabe Jr., G. J. (1999). Evaluating the use of “goodness-of-fit” Measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35 (1), 233-241. https://doi.org/10.1029/1998WR900018
  • Llive, F., Cadillo Benalcazar, J. J., Liger, B., Rosero Asqui, G., Fraga Ramos, E. & Ramos Martín, J. (2015). Vulnerabilidad y dependencia internacional de fertilizantes en el Ecuador [Vulnerability and international dependence on fertilizers in Ecuador]. Technology Magazine - ESPOL, 29 (2), 1-28.
  • Mayorga, E., Seitzinger, S. P., Harrison, J. A., Dumont, E., Beusen, A. H. W., Bouwman, A. F., Fekete, B. M., Kroeze, C. & Van Drecht, G. (2010). Global Nutrient Export from WaterSheds 2 (NEWS 2): model development and implementation. Environmental Modelling & Software, 25 (7), 837-853. https://doi.org/10.1016/j.envsoft.2010.01.007
  • Nash, J. E. & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models. Part I - a discussion of principles. Journal of Hydrology, 27 (3), 282-290.
  • Naturstyrelsen (2014). The Danish Nature Agency’s Guidelines for Nitrogen Calculations. Copenhagen: Ministry of Environment of Denmark. https://mst.dk/media/121898/kvaelstofberegvejledningmaj2014.pdf [accessed: 26.04.2023].
  • Okruszko, T. (2005). Kryteria hydrologiczne w ochronie mokradeł [Hydrological criteria in the protection of wetlands]. Warszawa: Wydawnictwo SGGW.
  • Pei-Yue, L., Hui, Q. & Jian-Hua, W. (2010). Groundwater Quality Assessment Based on Improved Water Quality Index in Pengyang County, Ningxia, Northwest China. Journal of Chemistry, 7 (S1), S209-S216. https://doi.org/10.1155/2010/451304
  • Poikane, S., Kelly, M. G., Herrero, F. S., Pitt, J. A., Jarvie, H. P., Claussen, U., Leujak, W., Solheim, A. L., Teixeira, H. & Phillips, G. (2019). Nutrient criteria for surface waters under the European Water Framework Directive: Current state-of-the-art, challenges and future outlook. Science of The Total Environment, 695, 133888. https://doi.org/10.1016/j.scitotenv.2019.133888
  • Quiroga, A. & Bono, A. (2012). Manual de fertilidad y evaluación de suelos [Soil fertility and evaluation manual]. Buenos Aires: Instituto Nacional de Tecnología Agropecuaria. Retrieved from: https://aulavirtual.agro.unlp.edu.ar/pluginfile.php/75200/mod_resource/content/0/Quiroga%20 et%20al%202007.pdf [accessed: 26.04.2023].
  • Razowska-Jaworek, L. & Sadurski, A. (2014). Nitrates in groundwater. Abingdon-on-Thames: Routledge.
  • Rekha, P., Raj, D. S. S., Aparna, C., Bindu, V. H., & Anjaneyulu, Y. (2005). Bioremediation of contaminated lake sediments and evaluation of maturity indicies as indicators of compost stability. International Journal of Environmental Research and Public Health, 2 (2), 251-262. https://doi.org/10.3390/ijerph2005020008
  • Salvador-Castillo, J. M., Bolaños-González, M. A., Palacios-Vélez, E., Palacios-Sánchez, L. A., López-Pérez, A., Muñoz-Pérez, J. M., Salvador-Castillo, J. M., Bolaños-González, M. A., Palacios-Vélez, E., Palacios-Sánchez, L. A., López-Pérez, A. & Muñoz-Pérez, J. M. (2021). Estimación de la fracción de cobertura vegetal y contenido de nitrógeno del dosel en maíz mediante sensores remotos [Estimation of fractional vegetation cover and canopy nitrogen content in corn by remote sensing]. Terra Latinoamericana, 39,1-11. https://doi.org/10.28940/terra.v39i0.899
  • Schindler, D. W. (2012). The dilemma of controlling cultural eutrophication of lakes. Proceedings of the Royal Society B: Biological Sciences, 279 (1746), 4322-4333. https://doi.org/10.1098/rspb.2012.1032
  • Silva, A. R. E., Cobelas, M. Á. & González, E. M. (2017). Impactos del nitrógeno agrícola en los ecosistemas acuáticos: Ecosistemas, 26 (1), 37-44. https://doi.org/10.7818/ECOS.2017.26-1.06
  • Sucholas, J., Molnár, Z., Łuczaj, Ł. & Poschlod, P. (2022). Local traditional ecological knowledge about hay management practices in wetlands of the Biebrza Valley, Poland. Journal of Ethnobiology and Ethnomedicine, 18 (1), 1-42. https://doi.org/10.1186/s13002-022-00509-9
  • Sutton, M. A., Howard, C. M., Erisman, J. W., Billen, G., Bleeker, A., Grennfelt, P., Grinsven, H. van & Grizzetti, B. (2011). The European nitrogen assessment: sources, effects and policy perspectives. Cambridge: Cambridge University Press.
  • Świątek, D., Szporak, S., Chormański, J. & Okruszko, T. (2008). Hydrodynamic model of the Lower Biebrza River flow - A tool for assessing the hydrologic vulnerability of a floodplain to management practices. Ecohydrology & Hydrobiology, 8 (2), 331-337. https://doi.org/10.2478/v10104-009-0026-8
  • Tan, S., Xie, D., Ni, J., Chen, L., Ni, C., Ye, W., Zhao, G., Shao, J. & Chen, F. (2023). Output characteristics and driving factors of non-point source nitrogen (N) and phosphorus (P) in the Three Gorges reservoir area (TGRA) based on migration process: 1995–2020. Science of The Total Environment, 875, 162543. https://doi.org/10.1016/j.scitotenv.2023.162543
  • Thompson, R. B., Incrocci, L., Ruijven, J. van & Massa, D. (2020). Reducing contamination of water bodies from European vegetable production systems. Agricultural Water Management, 240, 106258. https://doi.org/10.1016/j.agwat.2020.106258
  • Toro Gallego, L. (2019). Aplicación de metodologías para la estimación de la eutrofización en emblases tropicales y selección del índice de estado trópico mas adecuado para le embalse Peñol-Guatapé, Colombia [Application of methodologies for the estimation of eutrophication in tropical reservoirs and selection of the most appropriate tropical state index for the Peñol-Guatapé reservoir, Colombia](engineering thesis). Medellin: Universidad de Antioquia. Retrieved from: https://bibliotecadigital.udea.edu.co/handle/10495/12104 [accessed: 26.04.2023].
  • Trehan, M., Wichtmann, W. & Grygoruk, M. (2022). Assessment of nutrient loads into the Ryck river and options for their reduction. Water, 14 (13), 2055. https://doi.org/10.3390/w14132055
  • Venegas, N., Marcinkowski, P., Piniewski, M. & Grygoruk, M. (2022). Charakterystyka składników bilansu wodnego, surowy bilans wodny w zlewniach wodowskazowych oraz w granicach Parku Narodowego i jego otuliny [Characteristics of water balance components, raw water balance in water gauge catchments and within the boundaries of the Biebrza National Park and its buffer zone]. Goniądz: Biebrza National Park.
  • Wassen, M. J., Barendregt, A., Palczynski, A., Smidt, J. T. de & Mars, H. de (1992). Hydro-ecological analysis of the Biebrza mire (Poland). Wetlands Ecology and Management, 2, 119-134.
  • Wuijts, S., Fraters, D., Boekhold, S. & Van Duijnen, R. (2022). Monitoring of nitrogen in water in the EU - legal framework, effects of nitrate, design principles, effectiveness and future developments. Brussels: European Parliament.
  • Xia, Y., Zhang, M., Tsang, D. C. W., Geng, N., Lu, D., Zhu, L., Igalavithana, A. D., Dissanayake, P. D., Rinklebe, J., Yang, X. & Ok, Y. S. (2020). Recent advances in control technologies for non-point source pollution with nitrogen and phosphorous from agricultural runoff: Current practices and future prospects. Applied Biological Chemistry, 63 (1), 1-13. https://doi.org/10.1186/s13765-020-0493-6
  • Xu, P., Zhu, J., Wang, H., Shi, L., Zhuang, Y., Fu, Q., Chen, J., Hu, H. & Huang, Q. (2021). Regulation of soil aggregate size under different fertilizations on dissolved organic matter, cellobiose hydrolyzing microbial community and their roles in organic matter mineralization. Science of The Total Environment, 755, 142595. https://doi.org/10.1016/j.scitotenv.2020.142595
  • Yang, X., Ji, G., Wang, C., Zuo, J., Yang, H., Xu, J. & Chen, R. (2019). Modeling nitrogen and phosphorus export with InVEST model in Bosten Lake basin of Northwest China. PLOS ONE, 14 (7), e0220299. https://doi.org/10.1371/journal.pone.0220299
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-96b9daee-25e6-4a60-a01f-c983f6c017cd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.