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Abstract
The paper deals with interactions between water waves propagating in fluid of constant depth.
In formulation of this problem, a nonlinear character of these interactions is taken into account.
In particular, in order to simplify a solution to nonlinear boundary conditions at the free surface,
a system of material coordinates is employed as independent variables in the description of the
phenomenon. The main attention is focused on the transient solutions corresponding to fluid
motion starting from rest. With respect to the initial value problem considered, we confine
our attention to a finite fluid domain. For a finite elapse of time, measured from the starting
point, the solution in a finite fluid area mimics a solution within an infinite domain, inherent
for wave propagation problems. Because of the complicated structure of equations describing
nonlinear waves, an approximate formulation is considered, which is based on a power series
expansion of dependent variables with respect to a small parameter. Such a solution is assumed
to be accurate in describing the main features of the phenomenon. Numerical experiments are
conducted to illustrate the approximate formulation developed in this paper.
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1. Introduction

Sea surface observed under natural conditions is formed by a set of waves of certain
lengths and heights propagating in the same or different directions. A sea state is a re-
sult of mutual interactions between the waves changing in time. A reliable prediction
of the free surface level is of practical importance. From a theoretical point of view,
the problem is difficult to handle because of the nonlinear character of interaction
between nonlinear surface waves. In a theoretical investigation of wave transforma-
tions we resort to approximate modeling of the original task that can describe the
main features of the phenomenon with acceptable accuracy. In order to simplify our
further discussion, we confine our attention to the plane, two-dimensional problem
of the transformation of individual waves propagating in fluid of constant depth. In
the analysis of water waves, space coordinates are commonly used as independent
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variables, and, at the same time, the assumption of the potential velocity field is in-
troduced into the description of the problem considered. With respect to this latter
assumptions, the description of water waves is reduced to the solution problem of
the well-known Laplace’s equation for the potential function within a fluid domain,
satisfying the boundary and initial conditions. The main difficulty in constructing this
solution emerges at the free surface of the fluid, which is an unknown variable of the
problem. Moreover, nonlinear boundary conditions for the potential function should
be satisfied at this boundary, which results from the kinematic and dynamic boundary
conditions at the free surface. Frequently, in the analysis of the gravitational waves we
confine our attention to periodic solutions in which the time factor is eliminated from
momentum equations. In this simplest case, we deal with a set of harmonic waves
described by sinusoidal functions.

In a general case, however, in describing interactions between gravitational waves,
it is difficult to eliminate the time factor from equations describing the problem, and
thus, we have to consider a fully nonlinear transient problem, dependent on space
and time coordinates as well. Usually, in discussing wave propagation problems, the
fluid domain is infinite, at least in the direction of wave propagation. With respect to
this, the classical problem of water waves is formulated in an infinite or semi-infinite
layer of fluid. In the latter case, it is possible to find a closed analytical solution to the
transient problem, but only for a linear problem of infinitesimal waves. As regards
the transformation of nonlinear waves, it is not possible to find a closed analytical
solution, and therefore we have to resort to approximate descriptions, for instance by
means of perturbation schemes or with the help of discrete formulations. With the
discrete approach, however, it is not possible to formulate the problem in an infinite
fluid domain, and thus it is necessary to confine our attention to a finite domain ob-
tained from the infinite one by means of an additional boundary and proper boundary
conditions assumed at this artificial boundary. On the other hand, for a fluid motion
starting from rest, it is possible to confine our attention to a finite fluid domain and
to construct a solution that is valid for a finite elapse of time measured from this
starting point. An example of the latter case is the initial generation of water waves
by a piston-type wave maker in a long flume, for which a solution for a finite elapse
of time from the starting point has properties of a solution in an infinite fluid domain.

The literature on the subject is considerable. In most cases, where particular prob-
lems associated with the generation, propagation, and transformation of water waves
are investigated, the spatial system of coordinates is employed in describing the phe-
nomenon. A detailed discussion of water waves may be found in monographs on the
subject. For instance, monographs by Stoker (1957), Wehausen & Laitone (1960) and
Whitham (1974) stand out among others. As far as nonlinear waves are concerned,
Tadjbakhsh & Keller (1960) discussed the problem of standing water waves of finite
amplitude. Applying a perturbation procedure to periodic waves, these authors ob-
tained a third-order formula describing pressure distribution over a vertical wall. Goda
(1967) extended the solution of Tadjbakhsh and Keller to the fourth-order approxi-
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mation and calculated wave pressure for various wave conditions. The perturbation
method was also used by Hsu et al (1979) in constructing a third-order approximation
to short-crested waves. Such waves are produced by two progressive waves propagat-
ing at an oblique angle to each other. The authors examined the case of propagating
waves reflected obliquely from a vertical wall. A problem of wave forces on vertical
walls, similar to that mentioned above, was discussed by Fenton (1985). He derived
third-order formulas describing the force and moment exerted on a vertical wall for
the reflection of waves with an arbitrary angle of incidence.

As regards wave propagations, Madsen (1970) discussed the problem of wa-
ter wave generation by a piston-type wave maker. The application of a linear the-
ory was found to be successful for small-amplitude waves. For finite amplitudes,
a second-order theory, based on a perturbation scheme, was developed for progressive
harmonic waves. A similar problem of water wave generation by a paddle generator
was investigated by Massel (1982). As in Madsen’s approach, a Stokes perturbation
method was applied to construct a second-order solution to the nonlinear theory for
progressive waves. It was found that together with a linear first-order solution and
a second-order Stokes harmonic wave, there appeared a second harmonic free wave
of small amplitude. The nonlinear mechanism of wave interaction was explained and
compared with experiments in a laboratory flume.

The problem of interaction between water waves emerges in analyses of the evo-
lution of a wave train in time. Usually, in analyses of this problem, a basically uniform
wave train with a small modulation is considered. The initial steepness of the wave
train and the number of wave components in the imposed modulation may lead to
substantial changes in the train profile, which appear in the form of growing mod-
ulation. In theoretical descriptions of this phenomenon, the nonlinear character of
waves interactions should be taken into account. Henderson et al (1999) considered
the time evolution of small amplitude modulations of two-dimensional periodic deep
water waves. A numerical code, based on the boundary integral method, was used to
solve Laplace’s equation for a fluid domain periodic in space. It was found that steeper
events are shorter in time and space than lower events. For waves that do not grow
too steep, the nonlinear Schrödinger equation gives satisfactory results. A numerical
study of nonlinear wave interaction is given in Kim & Ertekin (2000). The equations
of the problem were derived by means of Hamilton’s principle with a particular form
of the Lagrangian density function. In the formulation, the linear solution was used as
an initial condition in the numerical procedure applied. It was shown numerically that
the model developed in that paper converges to known exact solutions of maximum
wave height.

More recently, Sulisz & Paprota (2011) gave a semi-analytical solution to the
problem of the evolution on nonlinear waves in a wave train, propagating in fluid
of constant depth. Nonlinear boundary conditions at the free surface were expanded
into Taylor series with retaining terms up to the third order in wave amplitude. A dis-
crete integration by means of the ABM method was used to predict the free surface
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and velocity potential at a new time step. The initial conditions are assumed in the
form of a sum of n(n = 4, 5, 6) linear harmonic waves with prescribed steepness. The
analysis shows that a train of basically sinusoidal waves may change its form within
a relatively short distance from its original position. At the same time, the initial,
very narrow-banded spectrum of the wave train is transformed into a broad-banded
spectrum in a fairly short period of time.

As already mentioned, the main difficulty in constructing a solution to the prob-
lem of water wave transformation results from nonlinear boundary conditions at the
free surface, which is a moving boundary of the fluid domain. One way to sim-
plify this problem is to resort to material coordinates in the description of this phe-
nomenon. With these coordinates, chosen as independent variables in the description
of water waves, an important contribution belongs to Fontanet (1961), who gave the
second-order solution to the harmonic generation of waves in fluid of constant depth.
This solution, obtained by means of a perturbation method with respect to a small
parameter, is difficult to evaluate because of the complicated structure of the deriva-
tion based on rigorous analytical formulations. Since that time, a number of papers
have appeared in which particular problems of wave mechanics are formulated with
material coordinates taken as independent variables. Shuto (1967) discussed the prob-
lem of long waves propagating in water of small depth that climb a sloping beach.
A similar problem of long nonlinear waves with finite amplitudes was investigated
by Goto (1979). He derived a set of nonlinear equations of the problem, which was
solved by means of a perturbation scheme with respect to finite displacements of fluid
particles from their initial positions. Another formulation of the problem of long non-
linear gravity waves, propagating over uneven bottoms, was given by Miles & Salmon
(1985). Their formulation is based on the fundamental kinematic assumption that hor-
izontal displacements of fluid particles, forming a vertical fluid column of the long
wave, do not depend on the vertical coordinate. The use of material coordinates made
it easier to derive the equations of the problem by means of the Hamilton principle
with approximations introduced into the Lagrangian density function. Wilde & Chy-
bicki (2004) derived equations for long waves propagating in shallow water by means
of a variational formulation with the kinematic assumption that the vertical material
lines of fluid particles remain vertical during the entire motion of the fluid. Their
kinematic assumption is similar to that employed by Miles & Salmon.

With respect to material coordinates, the free surface is defined by the positions of
material particles forming this surface within the entire range of time. In other words,
the material coordinates of the free surface remain unchanged during the fluid motion.
With these coordinates, the boundary conditions at the free surface reduce to a single
condition that the pressure at this boundary should be constant (or equal to zero).
In this approach, however, Laplace’s equation for the velocity potential, expressed
in terms of material variables, becomes a nonlinear partial differential equation. Al-
though the space (Eulerian) system of coordinates is the most familiar in descriptions
of water waves, it has been found here that material coordinates may be more conve-
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nient in the description of nonlinear water waves considered, and therefore, in what
follows, we confine our attention to this system of coordinates. In the present paper,
the plane initial-value problem of nonlinear water waves generated in a rectangular
fluid domain is considered.

2. Formulation of the Problem

Let us consider a rectangular fluid domain shown schematically in Fig. 1. The fluid
motion is induced by a piston-type wave maker (rigid wall OC in the figure), which
starts to move at a certain point in time. One may also consider the case of two genera-
tors – walls OC and AB with assumed motions starting from rest. In order to describe
the fluid motion, a Cartesian system of coordinates zr (r = 1, 2) is introduced that
denotes the positions of fluid particles in the actual configuration. In the reference
configuration, an additional Cartesian system of coordinates Zλ (λ = 1, 2) is employed
where (Z1,Z2) denotes the name of a fluid particle. Hereinafter Latin symbols are
used to denote the components with respect to space coordinates, and Greek symbols
denote the associated components in the material coordinate system. The fluid motion
is described by mapping the names into the actual positions of the material points

zr
(
Zλ, t

)
= δr

λZ
λ + wr

(
Zλ, t

)
, (1)

where δr
λ is the Kronecker delta, wr are components of the displacement vector, and

zr = δr
λZ

λ at t = 0.

Fig. 1. Rectangular fluid domain

The Jacobian of transformation is the determinant of the matrix of the transfor-
mation gradients i.e.

J = det
[
zi
,α

]
, (2)

where the symbol ,α denotes the partial derivative with respect to Zα. In a similar
way, the subscript ,i will be used to denote the partial derivative with respect to zi,
and the symbol ,t will denote the derivative with respect to time.
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The inverse matrix of the transformation gradients reads

[
Zα
,i

]
=

1
J

 z2
,λ=2 −z1

,λ=2

−z2
,λ=1 z1

,λ=1

 . (3)

For incompressible fluids, the Jacobian is equal to one. With the above relations it is
a simple task to transform equations of fluid motion from the Eulerian variables into
the Lagrangian ones, and vice versa. For the potential motion considered, the potential
function Φ(zi, t) satisfies Laplace’s equation in the space coordinates. With respect to
the material coordinates, this equation is transformed into the following one:

δrs
[
Φ,βZβ

,r
]
,α

Zα
,s = 0, (4)

where the potential function depends directly on the material variables i.e. Φ(Zλ, t).
At the same time, the velocity field is described by the formula

wr
,t

(
Zλ, t

)
= Φ,βZβ

,r , (r, β = 1, 2) . (5)

For the incompressible fluid considered, the “pressure” function is described by the
Bernoulli equation

P
(
Zλ, t

)
=

p
(
Zλ, t

)
ρ

= h − Φ,t +
1
2
δrsφ,βZβ

,rΦ,γZγ
,s + C (t) , (6)

where p
(
Zλ, t

)
is the fluid pressure, C (t) is a “constant” of the solution, and h is the

potential of a mass force due to the gravitational field

h (zr) = gizi. (7)

When the coordinate system is chosen in such a way that z2 acts vertically upwards, the
coefficients gi are: g1 = 0 and g2 = −g, where g is the gravitational acceleration. For
the two-dimensional problem considered, it may also be convenient to introduce the
classic notation

(
z1 = x, z2 = z

)
for the current configuration and

(
Z1 = X, Z2 = Z

)
for the reference configuration. Following this notation, equation (5) assumes the form

w1
,t = u,t = Φ,X

(
1 + v,Z

)
− Φ,Zv,X ,

w2
,t = v,t = −Φ,Xu,Z + Φ,Z

(
1 + u,X

)
,

(8)

where w1 = u and w2 = v denote the components of the displacement vector

u
(
Zλ, t

)
=

t∫
0

u,t
(
Zλ, ξ

)
dξ + u

(
Zλ, t = 0

)
,

v
(
Zλ, t

)
=

t∫
0
v,t

(
Zλ, ξ

)
dξ + v

(
Zλ, t = 0

)
.

(9)
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For the case shown in Fig. 1, the boundary conditions read

u,t
(
Z1 = 0,Z2, t

)
= xa (t) , u,t

(
Z1 = L,Z2, t

)
= xb (t) , (10a)

v,t
(
Z1,Z2 = 0, t

)
= 0, (10b)

P
(
Z1,Z2 = H, t

)
= const. (10c)

In these relations, xa(t) and xb(t) denote prescribed velocities at the walls OC and
AB, respectively.

Knowing that

h
(
Zλ, t

)
= gz2

(
Zλ, t

)
= g

[
Z2 + v

(
Zλ, t

)]
(11)

and substituting C = gH in equation (6), one obtains the following relation:

P
(
Zλ, t

)
= g

(
H − Z2

)
− gv

(
Zλ, t

)
−
∂

∂t
Φ

(
Zλ, t

)
+

1
2

[(
u,t

)2
+

(
v,t

)2] . (12)

3. Perturbation Scheme for the Fundamental Relations

The nonlinear problem formulated above has no closed analytical solution, and there-
fore, in order to find its solution, we resort to approximate formulation by means of
a perturbation scheme, which is based on the assumption that the potential function,
together with the displacement and velocity fields, possesses a power series expan-
sion with respect to a small parameter (Wehausen & Laitone 1960 and Stoker (1957).
A general scheme for approximating the nonlinear equations is given by the following
power series expansions in the small parameter ε:

Φ
(
Zλ, t

)
= εφ1

(
Zλ, t

)
+ ε2φ2

(
Zλ, t

)
+ . . . ,

u
(
Zλ, t

)
= εu1

(
Zλ, t

)
+ ε2u2

(
Zλ, t

)
+ . . . ,

v
(
Zλ, t

)
= εφ1

(
Zλ, t

)
+ ε2φ2

(
Zλ, t

)
+ . . . ,

P
(
Zλ, t

)
= P0 + εP1

(
Zλ, t

)
+ ε2P2

(
Zλ, t

)
+ . . . ,

(13)

where φi, ui, vi, and Pi are ‘components’ of the solution.
In order to simplify our further discussion, the terms up to the second order in the

expansions are taken into account. Substituting these relations into equation (4) and
collecting terms with the same power in ε, one obtains

ε → φ1
,11 + φ1

,22 = 0,

ε2 → φ2
,11 + φ2

,22 + 2
[
φ1
,11v

1
,2 − φ

1
,12

(
u1
,2 + v1

,1

)
+ φ1

,22u
1
,1

]
= 0.

(14)
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In a similar way, the expansion of the velocity components (8) gives

ε → u1
,t = φ1

,1, v1
,t = φ1

,2,

ε2 → u2
,t = φ2

,1 + φ1
,1v

1
,2 − φ

1
,2v

1
,1, v2

,t = φ2
,2 + φ1

,2u
1
,1 − φ

1
,1u

1
,2.

(15)

The pressure function components read

ε0 → P0 = g (H − Z) ,
ε → P1 = −gv1 − φ1

,t ,

ε2 → P2 = −gv2 − φ2
,t +

1
2

[(
φ1
,1

)2
+

(
φ1
,2

)2]
.

(16)

The first equation in (16) describes the hydrostatic pressure.
With respect to the expansion procedure, it is a simple task to write the associ-

ated dynamic boundary conditions at the free surface Z = H . From equation (10c), it
follows that ∂P/∂t = 0, and thus

ε → φ1
,tt + gφ1

,2

∣∣∣
Z=H

= 0,

ε2 → φ2
,tt + gφ2

,2 + g
(
φ1
,2u

1
,1 − φ

1
,1u

1
,2

)
−

(
φ1
,1φ

1
,1t + φ1

,2φ
1
,2t

)∣∣∣∣
Z=H

= 0.
(17)

The boundary condition on the bottom (Z2 = Z = 0) gives

ε → φ1
,2

∣∣∣
Z=0 = 0,

ε2 → φ2
,2 + φ1

,2u
1
,1 − φ

1
,1u

1
,2

∣∣∣
Z=0 = 0.

(18)

At the left boundary (Z1 = X = 0), we have the prescribed velocity xa,t(t), and thus

ε → φ1
,1

∣∣∣
X=0 = xa,t(t),

ε2 → φ2
,1 + φ1

,1v
1
,2 − φ

1
,2v

1
,1

∣∣∣
X=0 = 0,

(19)

where xa(t) denotes the horizontal displacement of the wall OC in Fig. 1.
In a similar way, at the right boundary (Z1 = X = L), the following relations hold:

ε → φ1
,1

∣∣∣
X=L

= xb,t(t),

ε2 → φ2
,1 + φ1

,1v
1
,2 − φ

1
,2v

1
,1

∣∣∣
X=L

= 0,
(20)

where xb(t) describes the horizontal displacement of the wall AB in Fig. 1.
The boundary conditions written above are supplemented by the initial condition

that at the initial moment of time (at t = 0+) the fluid is at rest i.e. the displacement
and velocity fields are both equal to zeros.
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4. First-order Solution to the Potential Motion

The first order formulation of the problem in the material variables is similar to the
classical linear formulation of the potential flow in the Eulerian variables. In both
descriptions, we have to solve Laplace’s equation for the velocity potential satisfying
prescribed boundary and initial conditions. With respect to the rectangular fluid do-
main considered, the solution to Laplace’s equation for the velocity potential φ1(Zλ, t)
is expressed in the following form:

φ1 = xa,t (t)

Z1 −

(
Z1

)2
−

(
Z2

)2

2L

 + xb,t (t)

(Z1 − L
)

+

(
Z1 − L

)2
−

(
Z2

)2

2L

 +

+B0 (t) +

∞∑
n=1

Bn (t)
cosh knZ2

cosh knH
cos knZ1,

(21)
where: kn = nπ/L, n = 1, 2, . . . .

The gradient of the potential function gives the velocity components

∂u
∂t

=
∂φ1

∂Z1 = xa,t
[
1 −

Z1

L

]
+ xb,t

Z1

L
−

∞∑
n=1

Bn (t) kn
cosh knZ2

cosh knH
sin knZ1,

∂v

∂t
=
∂φ1

∂Z2 =
(
xa,t − xb,t

) Z2

L
+

∞∑
n=1

Bn(t)kn
sinh knZ2

cosh knH
cos knZ1.

(22)

In these relations, u = u(Zλ, t) and v = v(Zλ, t) denote components of the displacement
vector, whereas xa,t and xb,t denote the horizontal velocities at Z1 = 0 and Z1 = L,
respectively. One can check that the potential satisfies the boundary conditions at
Z1 = 0 and Z1 = L, and on the bottom line Z2 = 0. The first-order solution has to
satisfy the boundary condition at the free surface – i.e. the first relation of (17). From
substitution of equation (21) into this condition, the following is obtained:

xa,ttt

Z1 −

(
Z1

)2
− (H)2

2L

 + xb,ttt

(Z1 − L
)
−

(
Z1 − L

)2
− (H)2

2L

 + B0
,tt+

+

∞∑
n=1

Bn
,tt cos

(
knZ1

)
+g

(xa,t − xb,t
) H

L
+

∞∑
n=1

Bnkn tanh (knH) cos
(
knZ1

)=0.

(23)

Multiplication of this equation consecutively by cos
(
knZ1

)
(n = 0, 1, 2, . . .) and inte-

gration in the range (0 − L) gives the system of differential equations

B0
,tt +

1
3

L
1 +

3
2

(
H
L

)2 (xa,ttt − xb,ttt
)

+
gH
L

(
xa,t − xb,t

)
= 0,

Bn
,tt + r2

nBn = RAn, n = 1, 2, . . .
(24)
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where:
r2

n = gkn tanh (knH) ,

RAn (t) =
2

k2
nL

[
xa,ttt − (−1)n xb,ttt

]
n = 1, 2, . . . .

(25)

Integration of equations (24) with respect to time gives

B0
,t = −

1
3

L
1 +

3
2

(
H
L

)2 (xa,tt − xb,tt
)
−
gH
L

(xa − xb) + C0,

Bn (t)=Dn
1 cos (rnt)+Dn

2 sin (rnt)+
1
rn

t∫
0

RAn (ξ) sin rn (t−ξ) dξ n=1, 2, . . . .
(26)

The constants C0, Dn
1 and Dn

2 (n = 1, 2, . . .) in the last relations are obtained from
initial conditions. As mentioned above, at the initial moment of time the fluid is at
rest, i.e. the displacement and the velocity fields are both equal to zero. It means that
Dn

1 = 0 (n = 1, 2, . . .). At the same time, at t = 0+ the free surface elevation is equal
to zero, and accordingly −φ1

,t
∣∣∣
Z2=H = 0. From substitution of equation (21) into this

condition it follows that

C0 =
gH
L

(xa − xb)
∣∣∣∣∣
t=0

= 0 (27)

and

Dn
2 =

2
k2

nrnL
[
xa,tt − (−1)n xb,tt

]∣∣∣∣∣∣
t=0

= 1, 2, . . . . (28)

With respect to the above results, equations (26) read

B0
,t (t) = −

1
3

L
1 +

3
2

(
H
L

)2 [xa,tt (t) − xb,tt (t)
]
−
gH
L

[xa (t) − xb (t)] ,

Bn (t) =
2

k2
nrnL

[
xa,tt − (−1)n xb,tt

]∣∣∣∣∣∣
t=0

sin (rnt) +

+
1
rn

t∫
0

RAn (ξ) sin rn (t − ξ) dξ n = 1, 2, . . . .

(29)

The formulae written above make it possible to calculate the first-order solution to
the initial value problem of fluid flow generation by the assumed generator motion
(motion of the walls OC and AB in Fig. 1).



Nonlinear Interactions between Gravity Eaves in Water of Constant Depth 13

5. Second-order Solution to the Potential Motion

From the discussion presented above, it follows that in order to find the second-order
solution, it is necessary to solve the Poisson equation for the potential φ2(Z1,Z2, t), to-
gether with appropriate boundary and initial conditions. Following the nomenclature
presented above, this equation is written in the form

∇2φ2
(
Z1,Z2, t

)
= W

(
Z1,Z2, t

)
(30)

where
W = −2

[
φ1
,11v

1
,2 − φ

1
,12

(
u1
,2 + v1

,1

)
+ φ1

,22u
1
,1

]
. (31)

Knowing boundary conditions at the fluid boundary, it is possible to find an approx-
imate solution of the Poisson equation by the boundary integral method (BIEM) in
which the continuous unknown function φ2 at the boundary is replaced by a number
of its values at chosen nodal boundary points. Such a procedure, however, requires
tedious calculation of integrals entering the last formula. Therefore, in what follows,
we resort to a direct, approximate integration of equation (30) by the finite difference
method (FDM). With this method, the number of final algebraic equations is greater
than in the case of the BIEM approach, but with the FDM formulation, we have to
deal with band matrices, which are much simpler to handle in numerical procedures.

Thus, let us consider a rectangular fluid domain with nodal points resulting from
the intersection of equally spaced vertical and horizontal lines. Let a and b denote
the spacing of the vertical and horizontal lines, respectively. The differential equation
(30) is replaced by a finite difference analog. For a typical point (i, j) within the fluid
domain, where Z1

i = (i − 1) × a and Z2
j = ( j − 1) × b, the finite difference approxima-

tion of the Poisson equation is written in the form

−φ2
i−1, j − εφ

2
i, j−1 + Kφ2

i, j − εφ
2
i, j+1 − φ

2
i+1, j = −a2Wi, j , (32)

where:
ε =

(a
b

)2
and K = 2 (1 + ε) . (33)

Equations (32) are written for all nodal points, including boundary points. Equations
(32) for boundary points also include unknown values of φ2 at virtual points placed on
the outward normal to the boundary at the points considered. The values of φ2 at these
external points are expressed in terms of potential values at internal and boundary
points by means of the boundary conditions. In this way, the number of the unknown
values of the potential is equal to the number of points representing the fluid domain,
i.e. the number of equations in the discrete formulation applied. It should be added
here that the boundary condition at the upper boundary of the fluid domain contains
the second time derivative of the potential function. Therefore, in order to find a solu-
tion of the problem, it is necessary to integrate the system of algebraic equations (32)
in the time domain. With respect to the discrete approach considered, time integration
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will be performed in the discrete time domain with a sequence of time steps with the
increment ∆t > 0. A system of equations is written for each level of the discrete time.
Since this system of equations also contains the unknown values of φ2 at the next time
level, the Wilson θ method is employed, which makes it possible to transform this
system into a form corresponding to a single level of time. For θ > 1.37, the discrete
time integration is unconditionally stable (for details, see Bathe 1982).

6. Numerical Experiments

The approximate solution presented above is applied to specified cases of water wave
generation in fluid of constant depth. The problem considered corresponds directly to
the generation of waves in a laboratory flume of finite length. For such a finite fluid
domain and a limited elapse of time, measured from the starting point, the solution
in the finite fluid domain mimics the solution in the infinite domain. Thus, let us
consider waves generation in a rectangular fluid domain by a piston-type generator,
which starts to move at a certain point in time. The second-order approximate solu-
tion for such a case has been obtained by the procedure developed in the preceding
sections. In order to assess the accuracy of this solution, it is reasonable to compare its
results with results of a rigorous analytical solution for infinitesimal waves generated
in a semi-infinite layer of fluid. The free surface elevation of the latter solution reads
(Madsen 1970, Szmidt et al 1992)

η(x, t) =
2
π

∞∫
0

tanh sh
s


t∫

0

xg(ξ) cos r(t − ξ)dξ

 cos sxds (34)

where xg(t) is the assumed generator velocity and r2 = gs tanh(sh).
This equation enables us to calculate the free surface evolution in time for a spec-

ified generator velocity xg(t). In particular, it is possible to obtain a solution for a har-
monic generation of waves. Such generation, however, requires additional explana-
tions. Since we are dealing with motion starting from rest, the harmonic generation
may only be obtained as a limiting case of generation described by the following
formula (Wilde & Wilde 2001):

xa(t) = C [A((τ) cosωt + D(τ) sinωt] , (35)

where xa(t) describes the generator displacement, and

A(τ) =
τ3

3!
exp(−τ),

D(τ) = 1 −
(
1 + τ +

τ2

2!
+
τ3

3!

)
exp(−τ) τ = ηt.

(36)

In these equations, τ is a non-dimensional time factor, t means time, and η is a memory
parameter responsible for an increase in time of the generator displacement. One can
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check that, at the starting point t = 0, the displacement, velocity, and acceleration
of the generator plate are all equal to zero. Moreover, with time, the generator goes
asymptotically to the harmonic motion with constant amplitude (C in equation (35)).

The solutions obtained are illustrated in Fig. 2, where the plots represent the free
surface elevation at selected points in time. From these plots, it may be seen that the
procedures described in the preceding sections give accurate results. The small differ-
ences between the plots illustrate the second-order effects resulting from the nonlinear
terms included in the formulation developed in this paper. As illustrated in this figure,
these effects are small for waves of small steepness. For waves of greater steepness
(with higher amplitudes), one may expect a greater influence of the nonlinear terms
on final results.

The overall accuracy of the numerical model may be assessed by comparing its
results with data obtained in experiments in a laboratory flume. The comparison is
shown in Fig. 3, where the plots represent the numerical solution corresponding to
experiments performed in the laboratory flume. From the plots, it may be seen that
the theoretical solution is close to the experimental one. It should be stressed, however,
that such a comparison is justified only to some extent, because the numerical model
is merely an approximation in the description of the problem of water wave generation
in a laboratory flume.

In order to obtain a better insight into the formulation developed above, the genera-
tion of two waves has been considered. In this example, generator motion (36) consists
of two independent components corresponding to two waves of different lengths and
amplitudes. Some of the results obtained are illustrated in Fig. 4, where the plots
show the free surface elevations at selected points in time (Fig. 4a) and the evolution
in time of the elevation at selected distances from the generator plate (Fig. 4b). The
plots represent the nonlinear solution to the problem mentioned. In order to estimate
the influence of nonlinear interaction between waves on final results, additional plots
are marked in this figure, which has been obtained by a direct summation of solutions
obtained for individual waves. Such a summation is admissible only for infinitesimal
waves, for which the principle of superposition may be employed. At the same time,
because of different speeds of the component waves, the free surface elevation under-
goes changes along the way of propagation of these waves. That is why the plots of
the free surface elevations, recorded at different distances from the generator plate,
are different from each other (for a single infinitesimal wave, these plots should have
the same shape).

In order to illustrate the problem of interaction between nonlinear waves, an addi-
tional example is considered that corresponds to the generation of a finite wave packet.
Two cases are presented. The first corresponds to a single frequency of generation. In
the second case, the sum of two frequencies of the generator motion is considered.
The solution for a single generation frequency is illustrated in Fig. 5, where the plots
show the evolution of the free surface at selected points in time (Fig. 5a) and the
evolution in time of the surface at selected distances from the generator plate (Fig.
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Fig. 2. Evolution in time of the free surface elevation
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Fig. 3. Comparison of the theoretical solution with data obtained in laboratory experiments
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Fig. 4a. Generation of waves with two different frequencies and corresponding free surface
elevation at selected points in time
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Fig. 4b. Generation of waves with two different frequencies and corresponding free surface
elevation at selected distances from the generator plate
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5b). From the plots, it may be seen that the wave packet undergoes changes on its way
of propagation.

The plots in Fig. 6 show the evolution in time and space of the wave packet for
the two frequencies of the generator motion. As in the case illustrated in Fig. 4, the
plots are supplemented by the sum of solutions for individual generations. As ex-
pected, the evolution in space (Fig. 6a) and in time (Fig. 6b) of the wave packet is
not regular, because of interaction between the waves. Perhaps it is worth adding here
that, in general, a time-dependent, finite amplitude wave changes shape on its way of
propagation.

7. Concluding Remarks

The theoretical description of nonlinear waves propagating in water of constant depth
was formulated with respect to material variables, which simplify the solution of
boundary conditions at the free surface of the fluid. The resulting equations of this
description were further expressed by means of the power series expansion with re-
spect to a small parameter. Only second-order terms of the expansion were taken into
account in numerical calculations. In this way, the nonlinear problem was reduced to
two-step calculations in which the linear solution was supplemented by additional,
second-order terms. The first-order solution is given in a closed analytical form. In
order to find the second-order effects, a discrete-in-space formulation by the finite
difference method was employed. The proposed theoretical model was validated by
comparing its results with the analytical solution to the linear problem of initial wave
generation in a semi-infinite layer of fluid and with data obtained in experiments car-
ried out in a laboratory flume. The approximate model of the description of the phe-
nomenon reveals some important features of the behavior of finite-amplitude waves
propagating in water of constant depth. In general, such waves change shape dur-
ing propagation. It is important to note that, due to interaction between nonlinear
waves, their height may change significantly, so that the amplitude of the resulting
wave may be more than twice as large as the initial amplitudes of the “component
waves”. For a finite-length wave packet, corresponding to a single frequency of gen-
eration, a change in the wave height may be observed during propagation. One can
regard such a packet as a combination of components in Fourier series transform, and
thus, the changes in the waves result from interactions between these components. On
the other hand, with two different frequencies of generation, interaction between the
wave components may be observed directly, since each of the assumed components
propagates with its own speed. Although, the dispersion relation for the second-order
approximation employed is the same as that for a linear case, in the general case of
a harmonic wave with a finite amplitude, the associated dispersion relation depends on
the wave amplitude, and thus it is difficult to regard such a wave as a steady harmonic
one. The method of solving the problem considered may be easily extended to cases
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Fig. 5a. Free surface transformation of the wave packet corresponding to a single frequency
of generation at selected points in time
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Fig. 5b. Free surface transformation of the wave packet corresponding to a single frequency
of generation at selected points in space
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Fig. 6a. Free surface transformation of the wave packet corresponding to two frequencies of
generation at selected points in time
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Fig. 6b. Free surface transformation of the wave packet corresponding to two frequencies of
generation at selected points in space
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in which the assumed number of generator frequencies with different amplitudes may
be greater than two.
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