PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation and Characterisation of Polylactic acid (PLA)/Polycaprolactone (PCL) Composite Microfibre Membranes

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Otrzymywanie i charakterystyka kompozytowych membran z mikrowłókien PLA/PCL
Języki publikacji
EN
Abstrakty
EN
Biodegradable polymers like PLA and PCL have wide application in tissue engineering because of their biocompatibility, degradation and mechanical properties. In this study, the optimised electrospinning parameters of PLA/PCL composite membranes were determined with scanning electron microscopy to obtain smooth and relatively fine microfibre. The properties and structure of electrospinning PLA, PCL and PLA/PCL(70/30) membranes were investigated by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), the water contact angle, water absorption degree and tensile strength. The results revealed that PLA/PCL composite membranes possessed better mechanical and hydrophilic properties when compared to single component microfibre membranes like PLA and PCL. The improvements above are conducive to microfibre membrane application in the biomedical sector.
PL
Biodegradowalne polimery, takie jak PLA i PCL znajdują wiele zastosowań w inżynierii tkankowej ze względu na swoją biokompatybilność, oraz właściwości mechaniczne. W badaniach, wyznaczono optymalne parametry elektroprzędzenia błon kompozytowych PLA/PCL stosując metodę skaningowej mikroskopii elektronowej, w celu otrzymania gładkich i cienkich mikrowłókien. Właściwości i strukturę elektroprzędzionych błon PLA, PCL i PLA/PCL(70/30) badano za pomocą elektroskopii skaningowego (SEM), różnicowej kalorymetrii skaningowej (DSC), dyfrakcji rentgenowskiej (XRD), metody kąta zwilżania wody, współczynnika absorpcji wody i wytrzymałości na rozciąganie. Wyniki wykazały, że błony kompozytowe PLA/PCL posiadają lepsze właściwości mechaniczne i hydrofilowe, w porównaniu do jednoskładnikowych błon z mikrowłókien, takich jak PLA i PCL. Powyższe ulepszenia sprzyjają zastosowaniu membran z mikrowłókien w branży biomedycznej.
Rocznik
Strony
17--25
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • Key Lab of Textile Science & Technology, Ministry of Edycation, Dong Hua University, Shanghai, P. R. China
autor
  • Key Lab of Textile Science & Technology, Ministry of Edycation, Dong Hua University, Shanghai, P. R. China
autor
  • Key Lab of Textile Science & Technology, Ministry of Edycation, Dong Hua University, Shanghai, P. R. China
Bibliografia
  • 1. Li D and Xia Y N. Electrospinning of microfibers: Reinventing the wheel[J]. Advanced Materials, 2004; 16(14): 1151-1170.
  • 2. Kriel H, Sanderson RD and Smit E. Coaxial Electrospinning of Miscible PLLA-Core and PDLLA-Shell Solutions and Indirect Visualisation of the Core-Shell Fibres Obtained. Fibres and Textiles in Eastern Europe 2012; 20, 2(91): 28-33.
  • 3. Avella M, Martuscelli E and Raimo M. Properties of blends and composites based on poly(3-hydroxy) butyrate (PHB) and poly(3-hydroxybutyrate-hydroxyvalerate) (PHBV) copolymers. Journal of Materials Science 2000; 35(3): 523-545.
  • 4. Anderson JM and Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Advanced Drug Delivery Reviews 1997; 28(1): 5-24.
  • 5. Gaudio CD, Ercolani E and Nanni R et al. Assessment of poly(epsilon-caprolactone) / poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blends processed by solvent casting and electrospinning. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 2011; 528(3): 1764-1772.
  • 6. Han J, Branford-White CJ and Zhu LML. Preparation of poly( £ -caprolactone) / poly(trimethylene carbonate) blend microfibers by electrospinning. Carbohyd Polymer 2010; 79: 214-218.
  • 7. Ju YM, Choi JS and Aboushwarcb T et al. Bilayered vascular scaffolds for engineering cellularized small diameter blood vessels[J] Journal Of The American College Of Surgeons 2010; 211(3): 144-145.
  • 8. Ruoslahti E and Pierschbacher MD. New Perspectives in Cell-Adhersion-RGD and Integins. Science, 1987; 238(4826): 491-497.
  • 9. Rayleigh FRS. On the equilibrium of liquid conducting masses charged with electricity. Edinburgh and Dublin Philosophical Magazine and Journal 1984; 44: 184.
  • 10. Min BM, Jeong L and Nam YS et al. Formation of silk fibroin matrices with different texture and its cellular response to normal human keratinocytes[J]. International Journal of Biological Macromolecules 2004; 34(5): 281-288.
  • 11. Araujo ES, Nascimento MLF and de Oliveira HP. Influence of Triton X-100 on PVA Fibres Production by the Electrospinning Technique. Fibres and Textiles in Eastern Europe 2013; 21; 4(100): 39-43.
  • 12. Chien HS and Wang C. Effects of Temperature and Carbon Microcapsules (CNCs) on the Production of Poly(D,L-lactic acid) (PLA) Nonwoven Microfibre Mat. Fibres and Textiles in Eastern Europe 2013; 21, 1(97): 72-77.
  • 13. Peng LL, Yang Q and Shen XY et al. Electrospinning research of polycaprolactone / polyethylene glycol blending microfiber[J]. Synthetic Fiber 2008; 37: 25.
  • 14. Boland ED, Pawlowski KJ and Barnes CP et al. Electrospinning of bioresorbable polymer for tissue engineering scaffolds[M]. USA Washington: AMER CHEMICAL SOC 2006, 918: 188-204.
  • 15. Yang F, Mumgan R and Wang S et al. Electrospinning of micro/micro scale poly(i, lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005; 26(15): 2603-2610.
  • 16. Zeinab Karemi, Iraj Rezaeian and Payam Zahedi, et al. Preparation and Performance Evaluation of Electrospun Poly(ɛ-caprolactone), Poly(lactic acid), and Their Hybird(50/50) Microfibrous Mats Containing Thymol as an Herbal Drug for Effective Wound Healing[J]. Journal of Applied Polymer Science 2013; 129(2): 756-766.
  • 17. Oliveira JE, Mattoso LHC and Orts W J et al. Structural and morphological characterization of micro and microfibers produced by electrospinning and solution blow spinning: A Comparative Study[J]. Advances in Materials Science and Engineering, 2013; (409572).
  • 18. Haroosh HJ, Chaudhary DS and Dong Y. Electrospun PLA/PCL fibers with tubular microclay: Morphological and structural analysis[J]. Journal of Applied Polymer Science 2012; 124(5): 3930-3939.
  • 19. Ye H, Lam H and Titehenal N et al. Reinforcement and rupture behavior of carbon Microtubese Polymer microfibers[J]. Applied Physics Letters, 2004; 85(10):1775-1777.
  • 20. Krupa A, Sobczyk AT and Jaworek A. Surface Properties ofPlasma-Modified Poly(vinylidene fluoride) and Poly(vinyl chloride) Microfibres. Fibres and Textiles in Eastern Europe 2014; vol.22, No.2(104): 35-39.
  • 21. Kriel H, Sanderson RD and Smit E. Single Polymer Composite Yarns and Films Prepared from Heat Bondable Poly(lactic acid) Core-shell Fibres with Submicron Fibre Diameters. Fibres and Textiles in eastern Europe 2013; 21; 4(100): 44-47.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-96abe896-0fe7-452a-b00f-ad2af487d63e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.