PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fabrication and Characterization of Fibrous Polycaprolactone Blended with Natural Green Tea Extracts Using Dual Solvent Systems

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nanofibrous dressings serve as an impeccable candidate in the management of wounds. Nanofibrous composites composed of polycaprolactone (PCL) and green tea using dual solvent systems at different ratios were fabricated through electrospinning. Pure PCL electrospun fibers along with composites were characterized by using scanning electron microscopy (SEM), wettability, water uptake analysis, and Fourier transform infrared spectroscopy (FTIR). SEM indicated that fibrous morphology and the diameter of PCL/green tea were smaller for chloroform/ dimethylformamide (DMF) (601 nm) and acetone/DMF (896 nm) than the pure PCL (673 nm and 1,104 nm for chloroform/DMF and acetone/DMF, respectively). Wettability of the fabricated composites was increased, and pure PCL fibers were slightly more hydrophobic (100°) than PCL/green tea (94°). Water uptake of the composites was enhanced compared with PCL significantly in acetone/DMF. The PCL/green tea nanofibrous wound dressing with enhanced physicochemical properties serves as an indispensable candidate for wound healing applications.
Rocznik
Strony
404--410
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
  • IJNUTM Cardiovascular Engineering centre, School of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia
  • Bionanotechnology Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
  • Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
  • IJNUTM Cardiovascular Engineering centre, School of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia
  • Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
Bibliografia
  • [1] Gottrup, F. A. (2004). Specialized wound-healing center concept: Importance of a multidisciplinary department structure and surgical treatment facilities in the treatment of chronic wounds. The American Journal of Surgery, 187, 38-43.
  • [2] Xue, M., Jackson, C. J. (2015). Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Advances in Wound Care, 4, 119-136.
  • [3] Kadavil, A., Zagho, M., Elzatahry, A., Altahtamouni, T. (2019). Sputtering of electrospun polymer-based nanaofibres for biomedical applications: A perspective. Journal of Nanomaterials, 9, 77.
  • [4] Balaji, A., Jaganathan, S., Ismail, A. F., Rajasekar, R. (2016). Fabrication and hemocompatibility assessment of novel polyurethane-based bio-nanofibrous dressing loaded with honey and Carica papaya extract for the management of burn injuries. International Journal of Nanomedicine, 11, 4339-4355.
  • [5] Mani, M. P., Jaganathan, S. K. (2020). Fabrication and characterization of electrospun polyurethane blended with dietary grapes for skin tissue engineering. Journal of Industrial Textiles, 50, 655-674.
  • [6] Mani, M. P., Jaganathan, S. K. (2019). Physicochemical and blood compatibility characteristics of garlic incorporated polyurethane nanofibrous scaffold for wound dressing applications. The Journal of the Textile Institute, 110, 1615-1623.
  • [7] Princeton, C., Shekh, M. R., Narayan, B. (2016). Facile fabrication of aloe vera containing PCL nanofibers for barrier membrane application. Journal of Biomaterials Science, Polymer Edition, 27, 692-708.
  • [8] Malikmammadov, E., Tanir, T. E., Kiziltay, A., Hasirci, V., Hasirci, N. (2018). PCL and PCL-based materials in biomedical applications. Journal of Biomaterials Science, Polymer Edition 29, 863-893.
  • [9] Sabu, M. C., Priya, T. T., Ramadasan, K., Ikuo, N. (2010). Beneficial effects of green tea: A literature reviews. Chinese Medicine, 5, 13.
  • [10] Khajavi, R., Abbasipour, M. (2017). Controlling nanofibre morphology by the electrospinning process. Electrospun Nanofibres, Woodhead Publishing Series in Textiles (Duxford; Cambridge), pp. 109-123.
  • [11] Hollister, S. J. (2005). Porous scaffold design for tissue engineering. Nature Materials, 4, 518-524.
  • [12] Jinyou, L., Xianfeng, W., Jianyong, Y., Gang, S. U., Moran, W. (2012). Biomimicry via Electrospinning. Critical Reviews in Solid State and Materials Sciences, 37, 114.
  • [13] Mehmet, E. O., Ioannis, D., Karantas, Z. S., Neslihan, U. O., Panoraia, I. S. (2020). Recent trends on wound management: New therapeutic choices based on polymeric carriers. Asian Journal of Pharmaceutical Sciences. https://doi.org/10.1016/j.ajps.2019.11.008.
  • [14] Chong, L. H., Lim, M. M., Sultana, N. (2015). Fabrication and evaluation of polycaprolactone/gelatin-based electrospun nanofibres with antibacterial properties. Journal of Nanomaterials, 15, 1–8.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-96a7414c-c832-4a95-bad7-7cd6a409eb04
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.