PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Influence of the Microstructural Evolution on the Corrosion Resistance of Cold Drawn Copper Single Crystals in NaCl

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the present work was to determine the influence of the microstructural evolution of copper single crystals with the initial orientations of <001> and <111> after cold drawing on their corrosion resistance. Transmission electron microscopy, X-ray diffraction, and electron backscattering diffraction were used to characterize the microstructural changes. To evaluate the corrosion resistance after deformation, open circuit potential, electrochemical impedance spectroscopy, and potentiodynamic polarization analyses were conducted. The microstructural observations showed the presence of dislocation cell structures and shear bands indeformed sample with initial orientation <001> single crystal, as well as a strongly-developed substructure in sample <111>. The material with initial orientation of <001> was more resistive in analyzed medium than material with the initial orientation of <111>.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Woloska St., 02-507 Warszawa, Poland
autor
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Woloska St., 02-507 Warszawa, Poland
  • Western University of Ontario, Chemistry Department, London, Canada
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Woloska St., 02-507 Warszawa, Poland
autor
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Woloska St., 02-507 Warszawa, Poland
Bibliografia
  • [1] N. Al-Araji, M. A.-T. Haydar, T. A. Wissam, The role of cold drawing on electrical and mechanical properties of copper the role of cold drawing on electrical and mechanical properties of copper cables, Int. J. Adv. Technol. Eng. Explor. 2, 2394-7454 (2018).
  • [2] K. S. Kim, J. Y. Song, E. K. Chung, J. K. Park, S. H. Hong, Relationship between mechanical properties and microstructure of ultra-fine gold bonding wires, Mech. Mater. 38, 119-127 (2006) DOI: 10.1016/j.mechmat.2005.05.015.
  • [3] J. Chen, W. Yan, B. Li, X. G. Ma, X. Z. Du, X. H. Fan, Microstructure and texture evolution of cold drawing (111) single crystal copper, Sci. China Technol. Sci. 54, 1551-1559 (2011) DOI: 10.1007/s11431-011-4349-5.
  • [4] K. Rajan, R. Petkie, Microtexture and anisotropy in wire drawn copper, Mater. Sci. Eng. A. 257, 185-197, (1998) DOI: 10.1016/S0921-5093(98)00838-7.
  • [5] H.-J. Shin, H.-T. Jeong, D. N. Lee, Deformation and annealing textures of silver wire, Mater. Sci. Eng. A 279, 244-253, (2002) DOI: 10.1016/s0921-5093(99)00535-3.
  • [6] S. G. Chowdhury, S. Das, P. K. De, Cold rolling behaviour and textural evolution in AISI 316L austenitic stainless steel, Acta Mater. 53, 3951-3959 (2005) DOI: 10.1016/j.actamat.2005.05.006.
  • [7] A. T. English, G. Y. Chin, On the variation of wire texture with stacking fault energy in f.c.c. metals and alloys, Acta Metall. 13, 1013-1016 (1965) DOI: 10.1016/0001-6160(65)90010-6.
  • [8] J. Chen, X. H. Fan, C. X. Liu, D. R. G., X. Fan, Dependence of texture evolution on initial orientation in drawn single crystal copper, Mater. Charact. 62, 237-242 (2011) DOI: 10.1016/j.matchar.2010.12.006.
  • [9] E. J. Palmiere, B. P. Wynne, L. Sun, W. M. Rainforth, P. Gong, The effect of thermomechanical controlled processing on recrystallisation and subsequent deformation-induced ferrite transformation textures in microalloyed steels, J. Mater. Sci. 53, 6922-6938 (2018) DOI: 10.1007/s10853-018-2029-6.
  • [10] N. Jia, D. Raabe, X. Zhao, Texture and microstructure evolution during non-crystallographic shear banding in a plane strain compressed Cu-Ag metal matrix composite, Acta Mater. 76, 238-251 (2014) DOI: 10.1016/j.actamat.2014.05.036.
  • [11] L. Lapeire, E. Martinez Lombardia, K. Verbeken, I. De Graeve, L.A.I. Kestens, H. Terryn, Effect of neighboring grains on the microscopic corrosion behavior of a grain in polycrystalline copper, Corros. Sci. 67, 179-183 (2013) DOI: 10.1016/j.corsci. 2012.10.017.
  • [12] K. Rahmouni, M. Keddam, A. Srhiri, H. Takenouti, Corrosion of copper in 3% NaCl solution polluted by sulphide ions, Corros. Sci. 47, 3249-3266 (2005) DOI: 10.1016/j.corsci.2005.06.017.
  • [13] Y. Ein-Eli, D. Starosvetsky, Review on copper chemical-mechanical polishing (CMP) and post-CMP cleaning in ultra large system integrated (ULSI)-An electrochemical perspective, Electrochim. Acta. 52, 1825-1838 (2007) DOI: 10.1016/j.electacta.2006.07.039.
  • [14] Z. Y. Chen, S. Zakipour, D. Persson, C. Leygraf, Effect of sodium chloride particles on the atmospheric corrosion of pure copper, Corros. Sci. 60, 479-491 (2004) DOI: 10.5006/1.3299244.
  • [15] J. P. Franey, M. E. Davis, Metallographic studies of the copper patina formed in the atmosphere, Corros. Sci. 27, 659-668 (1987) DOI: 10.1016/0010-938X(87)90048-5.
  • [16] R. L. Frost, Raman spectroscopy of selected copper minerals of significance in corrosion, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 59, 1195-1204 (2003) DOI: 10.1016/S1386-1425(02)00315-3.
  • [17] M. Metikoš-Huković, I. Škugor, Z. Grubač, R. Babić, Complexities of corrosion behaviour of copper-nickel alloys under liquid impingement conditions in saline water, Electrochim. Acta. 55, 3123-3129 (2010) DOI: 10.1016/j.electacta.2010.01.066.
  • [18] J. M. Bastidas, E. Cano, D. M. Bastidas, S. Fajardo, M. Criado, V. M. La Iglesia, Copper deterioration: causes, diagnosis and risk minimisation, Int. Mater. Rev. 55, 99-127 (2010) DOI: 10.1179/095066009x12506721665257.
  • [19] M. Ochoa, M. A. Rodríguez, S. B. Farina, Corrosion of high purity copper in solutions containing NaCl, Na2SO4 and NaHCO3 at different temperatures, Procedia Mater. Sci. 9, 460-468 (2015) DOI: 10.1016/j.mspro.2015.05.017.
  • [20] S. A. Kaluzhina, I. V. Kobanenko, Mechanism of local activation of copper in the presence of chloride and sulfate ions at elevated temperature and heat transfer, Prot. Met. 37, 237-243 (2001) DOI: 10.1023/A:1010494226972.
  • [21] L. Lapeire, Influence of grain size on the electrochemical behavior of pure copper, J. Mater. Sci. 52, 1501-1510 (2017) DOI: 10.1007/s10853-016-0445-z.
  • [22] S. S. Kim, U. Erb, K. Aust, G. Palumbo, Grain boundary character distribution and intergranular corrosion in high-purity aluminum, Scr. Mater. 44, 835-839 (2001) DOI: 10.1016/S1359-6462(00)00682-5.
  • [23] H. Chen, M. Bettayeb, V. Maurice, L. H. Klein, L. Lapeire, K. Verbeken, et al., Local passivation of metals at grain boundaries: In situ scanning tunneling microscopy study on copper, Corros. Sci. 111, 659-666, (2016) DOI: 10.1016/j.corsci.2016.04.013.
  • [24] H. Miyamoto, K. Ikeuchi, T. Mimaki, The role of grain boundary plane orientation on intergranular corrosion of symmetric and asymmetric [110] tilt grain boundaries in directionally solidified pure copper, Scr. Mater. 50, 1417-1421, (2004) DOI: 10.1016/j.scriptamat.2004.03.016.
  • [25] K. Hagihara, M. Okubo, M. Yamasaki, T. Nakano, Crystal-orientation-dependent corrosion behaviour of single crystals of a pure Mg and Mg-Al and Mg-Cu solid solutions, Corros. Sci. 109, 68-85, (2016) DOI: 10.1016/j.corsci.2016.03.019.
  • [26] G. L. Song, R. Mishra, Z. Xu, Crystallographic orientation and electrochemical activity of AZ31 Mg alloy, Electrochem. Commun. (2010) DOI: 10.1016/j.elecom.2010.05.011.
  • [27] M. Liu, D. Qiu, M.C. Zhao, G. Song, A. Atrens, The effect of crystallographic orientation on the active corrosion of pure magnesium, Scr. Mater. 58, 421-424 (2008) DOI: 10.1016/j.scriptamat.2007.10.027.
  • [28] G. K. Williamson, W. Hall, X-ray line boradening from filed aluminium and wolfram, Acta Metall. 1, 22-30 (1953) DOI: 10.1016/0001-6160(53)90006-6.
  • [29] J. Han, Z. Zhu, H. Li, C. Gao, Microstructural evolution, mechanical property and thermal stability of Al-Li 2198-T8 alloy processed by high pressure torsion, Mater. Sci. Eng. A. 651, 435-441 (2016) DOI: 10.1016/j.msea.2015.10.112.
  • [30] I. F. Mohamed, Y. Yonenaga, S. Lee, K. Edalati, Z. Horita, Age hardening and thermal stability of Al-Cu alloy processed by high-pressure torsion, Mater. Sci. Eng. A 627, 111-118 (2015) DOI: 10.1016/j.msea.2014.12.117.
  • [31] W. Brandt, R. Paulin, C. Dauwe, Positron trapping by defects in plastically deformed copper, Phys. Lett. A 48, 480-482 (1974) DOI: 10.1016/0375-9601(74)90632-X.
  • [32] L. G. Schulz, A direct method of determining preferred orientation of a flat reflection sample using a geiger counter x-ray spectrometer, J. Appl. Phys. 20, 1030-1033 (1949) DOI: 10.1063/1.1698268.
  • [33] T. Wejrzanowski, W. L. Spychalski, K. Rożniatowski, K. J. Kurzydłowski, Image based analysis of complex microstructures of engineering materials, Int. J. Appl. Math. Comput. Sci. 18, 33-39 (2008) DOI: 10.2478/v10006-008-0003-1.
  • [34] P. Li, Z. F. Zhang, X. W. Li, S. X. Li, Z. G. Wang, Effect of orientation on the cyclic deformation behavior of silver single crystals: Comparison with the behavior of copper and nickel single crystals, Acta Mater. 57, 4845-4854 (2009) DOI: 10.1016/j.acta-mat.2009.06.048.
  • [35] P. Li, S. X. Li, Z. G. Wang, Z. F. Zhang, Fundamental factors on formation mechanism of dislocation arrangements in cyclically deformed fcc single crystals, Prog. Mater. Sci. 56, 328-377 (2011) DOI: 10.1016/j.pmatsci.2010.12.001.
  • [36] H. Paul, J. H. Driver, Z. Jasieński, Shear banding and recrystallization nucleation in a Cu-2% Al alloy single crystal, Acta Mater. 50, 815-830 (2002) DOI: 10.1016/S1359-6454(01)00381-0.
  • [37] H. Paul, J. H. Driver, C. Maurice, A. Piatkowski, The role of shear banding on deformation texture in low stacking fault energy metals as characterized on model Ag crystals, Acta Mater. 55, 575-588, (2007) DOI: 10.1016/j.actamat.2006.08.051.
  • [38] P. Eisenlohr, F. Roters, D. Raabe, X. Zhao, N. Jia, Orientation dependence of shear banding in face-centered-cubic single crystals, Acta Mater. 60, 3415-3434 (2012) DOI: 10.1016/j.acta-mat.2012.03.005.
  • [39] L. A. I. Kestens, H. Pirgazi, Texture formation in metal alloys with cubic crystal structures, Mater. Sci. Technol. (United Kingdom). 32, 1303-1315, (2016) DOI: 10.1080/02670836.2016.1231746.
  • [40] X. Huang, G. Winther, Dislocation structures. Part I. Grain orientation dependence, Philos. Mag. 87, 5189-5214, (2007) DOI: 10.1080/14786430701652851.
  • [41] M. Odnobokova, A. Belyakov, R. Kaibyshev, Grain refinement and strengthening of austenitic stainless steels during large strain cold rolling, Philos. Mag. 99, 531-556 (2018) DOI: 10.1080/14786435.2018.1546961.
  • [42] C. Haase, S. G. Chowdhury, L. A. Barrales-Mora, D. A. Molodov, G. Gottstein, On the relation of microstructure and texture evolution in an austenitic Fe-28Mn-0.28C TWIP steel during cold rolling, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44, 911-922 (2013) DOI: 10.1007/s11661-012-1543-4.
  • [43] Z. Yanushkevich, A. Belyakov, C. Haase, D. A. Molodov, R. Kaibyshev, Structural/textural changes and strengthening of an advanced high-Mn steel subjected to cold rolling, Mater. Sci. Eng. A 651, 763-773 (2016) DOI: 10.1016/j.msea.2015.11.027.
  • [44] X. H. Fan, D. Tang, W. L. Fang, D. Y. Li, Y. H. Peng, Microstructure development and texture evolution of aluminum multi-port extrusion tube during the porthole die extrusion, Mater. Charact. 118, 468-480 (2016) DOI: 10.1016/j.matchar.2016.06.025.
  • [45] F. Pérocheau, J. H. Driver, Texture gradient simulations for extrusion and reversible rolling of FCC metals, Int. J. Plast. 16, 73-89 (2000) DOI: 10.1016/S0749-6419(99)00048-0.
  • [46] S. Chen, D. Zhang, Study of corrosion behavior of copper in 3.5/wt.% NaCl solution containing extracellular polymeric substances of an aerotolerant sulphate-reducing bacteria, Corros. Sci. 136, 275-284 (2018) DOI: 10.1016/j.corsci.2018.03.017.
  • [47] D. Wang, B. Xiang, Y. Liang, S. Song, C. Liu, Corrosion control of copper in 3.5 wt.% NaCl solution by domperidone: Experimental and theoretical study, Corros. Sci. 85, 77-86 (2014) DOI: 10.1016/j.corsci.2014.04.002.
  • [48] W. Chen, S. Hong, H. B. Li, H. Q. Luo, M. Li, N. B. Li, Protection of copper corrosion in 0.5M NaCl solution by modification of 5-mercapto-3-phenyl-1,3,4-thiadiazole-2-thione potassium self-assembled monolayer, Corros. Sci. 61, 53-62 (2012) DOI: 10.1016/j.corsci.2012.04.023.
  • [49] T. Kosec, Z. Qin, J. Chen, A. Legat, D. W. Shoesmith, Copper corrosion in bentonite/saline groundwater solution: Effects of solution and bentonite chemistry, Corros. Sci. 90, 248-258 (2015) DOI: 10.1016/j.corsci.2014.10.017.
  • [50] S. L. Li, Y. G. Wang, S. H. Chen, R. Yu, S. B. Lei, H. Y. Maetal., Some aspects of quantum chemical calculations for the study of Schiff base corrosion inhibitors on copper in NaCl solutions, Corros. Sci. 41, 1769-1782 (1999) DOI: 10.1016/S0010-938X(99)00014-1.
  • [51] Y. Feng, K.-S. Siow, W.-K. Teo, K.-L. Tan, A.-K. Hsieh, Synergistic effects between sodium tripolyphosphate and zinc sulfate in corrosion inhibition for copper in neutral tap water, Corrosion. 53, 546-555 (1997) DOI: 10.5006/1.3290286.
  • [52] E. M. Sherif, Corrosion behavior of copper in 0.50 M hydrochloric acid pickling solutions and its inhibition by 3-amino-1,2,4-triazole, Corrosion. 7, 1884-189 (2012).
  • [53] C. Lilja, S. Engström, O. Olsson, A. Hedin, A. Ström, Influence of high chloride concentration on copper corrosion, SKM Memo Publiaction 1-6, (2013).
  • [54] H. Zhao, J. Chang, A. Boika, A. J. Bard, Electrochemistry of high concentration copper chloride complexes, Anal. Chem. 85, 7696-7703, (2013) DOI: 10.1021/ac4016769.
  • [55] B. Fu, W. Liu, Z. Li, Calculation of the surface energy of fcc-metals with the empirical electron surface model, Appl. Surf. Sci. 256, 6899-6907 (2010) DOI: 10.1016/j.apsusc.2010.04.108.
  • [56] Y. N. Wen, J. M. Zhang, Surface energy calculation of the fcc metals by using the MAEAM, Solid State Commun. 144, 163-167 (2007) DOI: 10.1016/j.ssc.2007.07.012.
  • [57] S. Ogata, N. Kobayashi, T. Kitagawa, S. Shima, A. Fukunuga, C. Takatoh, et al., Nanoscale corrosion behavior of polycrystalline copper fine wires in dilute NaCl solution investigated by in-situ atomic force microscopy, Corros. Sci. 105, 177-182 (2016) DOI: 10.1016/j.corsci.2016.01.015.
Uwagi
EN
1. This work was supported by The National Science Center of Poland (project no: 2016/21/B/ST8/01183) „The influence of orientation of single crystals with different stacking fault energy on deformation texture formation during drawing”.
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-96a4ddfd-115f-4ccf-943c-39e73cc982ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.