PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Using a UAV to Assess Air Pollution and Identify Dominant Emission Sources

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Central Europe is the region with the highest concentration of particulate matter with aerodynamic diameter less than 10 micrometers (PM10) in outdoor air. Weather conditions combined with a high industrialization of regions laying along the Czech Republic and Poland border influence the formation of long smog episodes with PM10 concentrations in the atmosphere at the value of several hundred micrograms in a cubic meter. However, it has been observed that the main source of particulates pollution in the area of the Polish-Czech border between the most populated areas of Ostrava and Katowice is the residential heating fired with solid fuels, participating at the level of not less than 21% in overall air contamination with dusts. It particularly concerns PM10, which is one of the major harmful air pollutants produced by the combustion of solid fuels such as biomass and coal. The measures leading to decrease the dust emission from coal burned individual heat sources include methods to eliminate old-type boilers not permitted by the law, as well as illegal incineration of fuels of bad quality or including admixture of wastes. It requires a new approach for effective identification of such sources, as well as for recognition of pollutants leaving household emitters and evaluation of their share in overall effect on human health. Unmanned aerial vehicles (UAVs) equipped with miniaturized sensors detecting gaseous and dust particles at the outlet of an individual emitter can compensate the lack of information unable to be obtain using traditional measurements. The use of UAVs to identify specific sources of air pollution is still at an early stage of development and there are not too many scientific publications on this topic so far. Despite it, this technology seems to be usable to create undemanding, low-cost and effective method of air pollution sources assessment. In the current article, some aspects of using UAVs for identification of especially troublesome emission sources located on residential areas are presented, including finding the dominant emission source, determining the optimal distance between a UAV and the emission source or the influence of the UAV altitude, movement and sampling time on measurement result.
Słowa kluczowe
Rocznik
Strony
134--144
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
  • Institute of Energy and Fuel Processing Technology, Zamkowa 1, 41-803 Zabrze, Poland
autor
  • Institute of Energy and Fuel Processing Technology, Zamkowa 1, 41-803 Zabrze, Poland
autor
  • Centre ENET–Energy Units for Utilization of Non-Traditional Energy Sources, VŠB–Technical University of Ostrava, 17. listopadu 15/2172, 708 00 Ostrava-Poruba, Czech Republic
  • Centre ENET–Energy Units for Utilization of Non-Traditional Energy Sources, VŠB–Technical University of Ostrava, 17. listopadu 15/2172, 708 00 Ostrava-Poruba, Czech Republic
  • Centre ENET–Energy Units for Utilization of Non-Traditional Energy Sources, VŠB–Technical University of Ostrava, 17. listopadu 15/2172, 708 00 Ostrava-Poruba, Czech Republic
  • Centre ENET–Energy Units for Utilization of Non-Traditional Energy Sources, VŠB–Technical University of Ostrava, 17. listopadu 15/2172, 708 00 Ostrava-Poruba, Czech Republic
  • Centre ENET–Energy Units for Utilization of Non-Traditional Energy Sources, VŠB–Technical University of Ostrava, 17. listopadu 15/2172, 708 00 Ostrava-Poruba, Czech Republic
  • Department of Electronics, VŠB–Technical University of Ostrava, Faculty of Electrical Engineering and Computer Science, 17. listopadu 15/2172, 708 00 Ostrava-Poruba, Czech Republic
  • Centre ENET–Energy Units for Utilization of Non-Traditional Energy Sources, VŠB–Technical University of Ostrava, 17. listopadu 15/2172, 708 00 Ostrava-Poruba, Czech Republic
  • Institute of Energy and Fuel Processing Technology, Zamkowa 1, 41-803 Zabrze, Poland
Bibliografia
  • 1. Alvarado M., Gonzalez F., Erskine P., Cliff D., Heuff D. 2017. A Methodology to Monitor Airborne PM10 Dust Particles Using a Small Unmanned Aerial Vehicle. Sensors, 17, 343. DOI: 10.3390/s17020343
  • 2. Alvarado M., Gonzalez F., Fletcher A., Doshi A. 2015. Towards the Development of a Low Cost Airborne Sensing System to Monitor Dust Particles after Blasting at Open-Pit Mine Sites. Sensors, 15, 19667–19687. DOI: 10.3390/s150819667
  • 3. Armstrong A.J. 2010. Development of a methodology for deriving safety metrics for uav operational safety performance measurement. Master thesis.
  • 4. Aurell J., Mitchell W., Chirayath V., Jonsson J., Tabor D., Gullett B. 2017. Field determination of multipollutant, open area combustion source emission factors with a hexacopter unmanned aerial vehicle. Atmos. Environ. 166: 433–440. DOI: 10.1016/j.atmosenv.2017.07.046
  • 5. Bitta J., Pavlíková I., Svozilík V., Jančík P. 2018. Air Pollution Dispersion Modelling Using Spatial Analyses. ISPRS Int. J. Geo-Inf., 7, 489. DOI: 10.3390/ijgi7120489
  • 6. Cárdenas A.M., Rivera L.M., Gómez B.L., Valencia G.M., Acosta H.A., Correa J.D. 2018. Short Communication: Pollution-and-greenhouse gases measurement system. Measurement, 129, 565–568. DOI: 10.1016/j.measurement.2018.07.039
  • 7. Chafe Z., Brauer M., Héroux M.-E., Klimont Z., Lanki T., Salonen R., Smith K. 2015. Residential heating with wood and coal: health impacts and policy options in Europe and North America. Report, WHO Europe, Copenhagen, Denmark.
  • 8. Fanizza C., De Berardis B., Ietto F., Soggiu M.E., Schirò R., Inglessis M., Ferdinandi M., Incoronato F. 2018. Analysis of major pollutants and physicochemical characteristics of PM2.5 at an urban site in Rome. Sci. Total Environ., 616–617, 1457–1468. DOI: 10.1016/j.scitotenv.2017.10.168
  • 9. IARC. 2013. Outdoor air pollution a leading environmental cause of cancer deaths. WHO Press Release No. 221
  • 10. Knudsen J. 2016. A method and an unmanned aerial vehicle for determining emissions of a vessel. Patent No. EP15701525.6A
  • 11. Køcks M. 2016. Remote sensing of sulphur and particle emission from ships. Environmental project No. 1835
  • 12. Markowicz K.M., Chiliński M.T. 2020. Evaluation of Two Low-Cost Optical Particle Counters for the Measurement of Ambient Aerosol Scattering Coefficient and Ångström Exponent. Sensors, 20, 2617. DOI: 10.3390/s20092617
  • 13. Ren H., Zhao Y., Xiao W., Hu Z. 2019. A review of UAV monitoring in mining areas: current status and future perspectives. Int. J. Coal Sci. Technol., 6, 320–333. DOI: 10.1007/s40789-019-00264-5
  • 14. Rossi P., Mancini F., Dubbini M., Mazzone F., Capra A. 2017. Combining nadir and oblique UAV imagery to reconstruct quarry topography: methodology and feasibility analysis. Eur. J. Remote Sens., 50, 211–221. DOI: 10.1080/22797254.2017.1313097
  • 15. Vicente A.B., Juan P., Meseguer S., Díaz-Avalos C., Serra L. 2018. Variability of PM10 in industrialized-urban areas. New coefficients to establish significant differences between sampling points. Environ. Pollut., 234, 969–978. DOI: 10.1016/j.envpol.2017.12.026
  • 16. Weber K., Heweling G., Fischer C., Lange M. 2017. The use of an octocopter UAV for the determination of air pollutants – a case study of the traffic induced pollution plume around a river bridge in Duesseldorf, Germany. Int. J. Environ. Sci., 2, 63–66.
  • 17. Yungaicela-Naula N., Garza-Castañon L.E., Zhang Y., Minchala-Avila L.I. 2019. UAV-Based Air Pollutant Source Localization Using Combined Metaheuristic and Probabilistic Methods. Appl. Sci., 9, 3712. DOI: 10.3390/app9183712
  • 18. Yungaicela-Naula N.M., Garza-Castanon L.E., Mendoza-Domınguez A., Minchala-Avila L.I., Garza-Elizondo L.E. 2017. Design and Implementation of an UAV-Based Platform for Air Pollution Monitoring and Source Identification. Congreso Nacional de Control Automático, Monterrey, Nuevo León, Mexico 2017.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-96a09c95-b5a1-4f70-94a2-4960a65053ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.