PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Potentiometric oxygen sensor with solid state reference electrode

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The concentration or the partial pressure of oxygen in an environment can be determined using different measuring principles. For high temperature measurements of oxygen, ceramic-based sensors are the most practical. They are simple in construction, exploration and maintenance. A typical oxygen potentiometric sensor consists of an oxygen ion conducting solid electrolyte and two electrodes deposited on the two sides of the electrolyte. In this paper different structures of potentiometric oxygen sensors with a solid state reference electrode were fabricated and investigated. The fabricated structures consisted of oxygen ion conducting solid electrolyte from yttria stabilized zirconia, a sensing platinum electrode and nickel-nickel oxide reference electrode. The mixture of nickel-nickel oxide was selected as the reference electrode because it provides reliable electrochemical potential in contact with oxygen conducting electrolyte. To avoid oxidation of nickel the reference electrode is sealed from ambient and the mixture of nickel-nickel oxide was formed electrochemically from nickel oxide after sealing. The effectiveness of the sealing quality and the effectiveness of nickel-nickel oxide mixture formation was investigated by impedance spectroscopy.
Słowa kluczowe
Rocznik
Strony
205--216
Opis fizyczny
Bibliogr. 19 poz., rys., wykr.
Twórcy
autor
  • Gdansk University of Technology, Faculty of Electronics, Telecommunications and Informatics, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
autor
  • Gdansk University of Technology, Faculty of Electronics, Telecommunications and Informatics, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
autor
  • Gdansk University of Technology, Faculty of Electronics, Telecommunications and Informatics, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
Bibliografia
  • [1] Szabo, N., Lee, C., Trimboli, J., Figueroa, O., Ramamoorthy, R., Midlam-Mohler, S., Soliman, A., Verweij, H., Dutta, P., Akbar, S. (2003). Ceramic-based chemical sensors, probes and field-tests in automobile engines. J. Materials Science, 38, 4239-4245.
  • [2] Akbar, S., Dutta, P., LeeHigh, C. (2006). Temperature Ceramic Gas Sensors: A Review. Int. J. Appl. Ceram. Technol., 3 (4) 302-311.
  • [3] Kotarski, M., Smulko, J. (2009). Noise measurement set-ups for fluctuations-enhanced gas sensing. Metrol. Meas. Syst, 16(3), 457-464.
  • [4] Kalinowski, P., Woźniak, Ł., Strzelczyk, A., Jasinski, P., Jasinski, G. (2013). Efficiency of Linear and Non-Linear Classifiers for Gas Identification from Electrocatalytic Gas Sensor. Metrol. Meas. Syst, 20(3), 501-512.
  • [5] Kaneko, H., Okamuraa, T., Taimatsu, H., Matsuki, Y., Nishida, H. (2005). Performance of a miniature zirconia oxygen sensor with a Pd-PdO internal reference. Sensor Actuat. B-Chem. 108, 331-334.
  • [6] Radhakrishnan, R., Virkar, A. V., Singhal, S. C., Dunham, G. C., Marina, O. A. (2005). Design, fabrication and characterization of a miniaturized series-connected potentiometric oxygen sensor. Sensor Actuat. B-Chem., 105, 312-321.
  • [7] Sprig, J. V., Ramamoorthy, R., Akbar, S. A., Routbort, J. L., Singh, D., Dutta, P. K. (2007). High temperature zirconia oxygen sensor with sealed metal/metal oxide internal reference. Sensor Actuat. B-Chem., 124, 192-201.
  • [8] Chowdhury, A. K. M. S., Akbar, S. A., Kapileshwar, S., Schorr, J. R. (2001). A Rugged Oxygen Gas Sensor with Solid Reference for High Temperature Applications. J. Electrochem. Soc., 148, G91-G94.
  • [9] Maskell, W. C., Steele, B. C. H. (1986). Solid state potentiometric oxygen gas sensors. J. Appl. Electrochem., 16, 475-489.
  • [10] Maskell, W. C. (2000). Progress in the development of zirconia gas sensors. Solid State Ionics, 134, 43-50.
  • [11] Jasiński, P. (2006). Solid-state electrochemical gas sensors. Materials Science Poland, 24(1), 269-278.
  • [12] López-Gándara, C., Ramos, F. M., Cirera, A. (2009). YSZ-Based Oxygen Sensors and the Use of Nanomaterials: A Review from Classical Models to Current Trends. Journal of Sensors, 2009, 258489.
  • [13] Hu, Q., Jacobsen, T., Hansen, K. V., Mogensen, M. (2012). Improved Internal Reference Oxygen Sensors with Composite Ceramic Electrodes. J. Electrochem. Soc., 159, B811-B817.
  • [14] Vollath, D. (1976). A Non-Destructive Method for Determining the Oxygen/Metal Ratio in Plutonium-Bearing Nuclear Oxide Fuel. Proceedings of a Seminar on Nuclear Fuel Quality Assurance Held by the International Atomic Energy Agency in Oslo, 165-173.
  • [15] van Setten, E., Gür, T. M., Blank, D. H. A., Bravman, J. C., Beasley, M. R. (2002). Miniature Nernstian oxygen sensor for deposition and growth environments. Rev. Sci. Instrum., 73, 156-161.
  • [16] ChaoYang, X., Xu Chen, L., Yan, Y., Ti Zhuang, W., Zhi Min, Z., Su Ping, Y. (2011). Preparation of nano-structured Pt-YSZ composite and its application in oxygen potentiometric sensor. Applied Surface Science 257, 7952-7958.
  • [17] Benammar, M., Maskell, W. C. (1993). A Novel Miniature Zirconia Gas Sensor with Pseudo- Reference: Amperometric Operation Providing Unambiguous Determination of Air-to-Fuel Ratio. Applied Physics A, 57, 45-50.
  • [18] Fouletier, J., Vitter, G., Kleitz, M. (1975). Measurement and regulation of oxygen content in gases using solid electrolyte cells. III. Oxygen pump-gauge. J. Appl. Electrochem., 5, 111-120.
  • [19] Beie, H. J., Gnorich, A. (1991). Oxygen gas sensors based on CeO2 thin film. Sensor Actuat. BChem., 4, 393-399.
Uwagi
EN
The work was supported by the National Centre for Research and Development, LIDER No. 22/103/L-2/10/NCBiR/2011 „Multisensor system for measuring air pollutants”.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-969ff060-56d1-4ab5-bb51-5551238f852d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.