Identyfikatory
Warianty tytułu
The role and potential of proteomic research
Języki publikacji
Abstrakty
Proteomic research plays a crucial role in unraveling the mysteries of cellular function. This paper explores the historical background and contemporary significance of proteomics, emphasizing its importance in understanding protein interactions within biological systems. We discuss key advancements in technology, particularly in mass spectrometry and ionization techniques, which have greatly enhanced our ability to analyze the proteome comprehensively. Moreover, we examine the potential applications of proteomic research in fieldssuch as diagnostics, drug development, and personalized medicine, highlighting its transformative impact on biomedical sciences. By addressing current challenges and future prospects, this review aims to provide a clear overview of the role and potential of proteomic research in advancing our understanding of complex biological processes.
Wydawca
Czasopismo
Rocznik
Tom
Strony
849--870
Opis fizyczny
Bibliogr. 43 poz., rys., wykr.
Twórcy
autor
- Wydział Chemii, Centrum Nauk Biologiczno-Chemicznych, Uniwersytet Warszawski, Żwirki i Wigury 101, 02-089 Warszawa, Polska
autor
- Wydział Chemii, Centrum Nauk Biologiczno-Chemicznych, Uniwersytet Warszawski, Żwirki i Wigury 101, 02-089 Warszawa, Polska
Bibliografia
- [1] I.M. Cristea, S.J. Gaskell, A.D. Whetton, Proteomics Techniques and Their Application to Hematology, Blood 2004, 103, s. 3624.
- [2] V.C. Wasinger, S.J. Cordwell, A. Cerpa-Poljak, J.X. Yan, A.A. Gooley, M.R. Wilkins, M.W. Duncan, R. Harris, K.L. Williams, I. Humphery-Smith, Progress with Gene-Product Mapping of the Mollicutes: Mycoplasma Genitalium, Electrophoresis 1995, 16, s. 1090.
- [3] I. Humphery-Smith, The 20th Anniversary of Proteomics and Some of Its Origins, Proteomics 2015, 15, s. 1773.
- [4] NobelPrize.org, The Nobel Prize in Chemistry 1958, https://www.nobelprize.org/prizes/chemistry/1958/summary/, dostęp: 16 sierpnia 2022.
- [5] NobelPrize.org, The Nobel Prize in Chemistry 1980, https://www.nobelprize.org/prizes/chemistry/1980/summary/, dostęp: 16 sierpnia 2022
- [6] P. Edman, E. Högfeldt, L.G. Sillén, P.-O. Kinell, Method for Determination of the Amino Acid Sequence in Peptides, Acta Chemica Scandinavica 1950, 4, s. 283.
- [7] S. Moore, W.H. Stein, Chromatographic Determination of Amino Acids by the Use of Automatic Recording Equipment, Analytical Chemistry 1963, s. 819.
- [8] R. Bąchor, A. Kluczyk, P. Stefanowicz, Z. Szewczuk, New Method of Peptide Cleavage Based on Edman Degradation, Molecular Diversity 2013, 17, s. 605.
- [9] U.K. Laemmli, Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4, Nature 1970, 227, s. 680.
- [10] G. Münzenberg, Development of Mass Spectrometers from Thomson and Aston to Present, International Journal of Mass Spectrometry 2013, 349–350, s. 9.
- [11] Nobel Prize Outreach, The Nobel Prize in Chemistry 2002, NobelPrize.Org, dostęp: 16 sierpnia 2022. Available online: https://www.nobelprize.org/prizes/chemistry/2002/summary/
- [12] A. Makarov, Electrostatic Axially Harmonic Orbital Trapping: A High-Performance Technique of Mass Analysis, Analytical Chemistry 2000, 72, s. 1156.
- [13] V. Cunsolo, V. Muccilli, R. Saletti, S. Foti, Mass Spectrometry in Food Proteomics: A Tutorial, Journal of Mass Spectrometry 2014, 49, s. 768.
- [14] E. Bulska, M. Bicka, A. Gawor, A. Karpiński, A. Konopka, Mass Spectrometry-Based Proteomic Analysis in Neurodegenerative Disorders’ Research, w: Handbook of Bioanalytics, Springer International Publishing, Cham, 2022, s. 1.
- [15] A. Gawor, A. Ruszczyńska, A. Konopka, G. Wryk, M. Czauderna, E. Bulska, Label-Free Mass Spectrometry-Based Proteomic Analysis in Lamb Tissues after Fish Oil, Carnosic Acid, and Inorganic Selenium Supplementation, Animals 2022, 12, s. 1428.
- [16] A. Gawor, A. Konopka, J.C. Torres Elguera, A. Ruszczyńska, M. Czauderna, E. Bulska, Label-Free Proteomic Approach to Identification and Quantification of Proteins in Animal Tissue Samples, w: Proceedings of the 14th ISC “Modern Analytical Chemistry”, K. Nesměrák (red.), Charles University, Faculty of Science, Prague, 2018, s. 25.
- [17] E. Bulska, A. Gawor, A. Konopka, G. Wryk, B. Czarkowska-Pączek, Z. Gajewski, L. Pączek, Label-Free Mass Spectrometry-Based Quantitative Proteomics to Evaluate the Effects of the Calcium-Sensing Receptor Agonist Cinacalcet on Protein Expression in Rat Brains and Livers, Medical Science Monitor 2022, 28, s. 937338.
- [18] A. Gawor, Z. Gajewski, L. Paczek, B. Czarkowska-Paczek, A. Konopka, G. Wryk, E. Bulska, Fluorine-Containing Drug Administration in Rats Results in Fluorination of Selected Proteins in Liver and Brain Tissue, International Journal of Molecular Sciences 2022, 23, s. 4202.
- [19] Gawor, A. Ruszczyńska, A. Konopka, G. Wryk, M. Czauderna, E. Bulska, Label-Free Mass Spectrometry-Based Proteomic Analysis in Lamb Tissues after Fish Oil, Carnosic Acid, and Inorganic Selenium Supplementation, Animals 2022, 12, s. 1428.
- [20] J. Cox, M. Mann, Is Proteomics the New Genomics? Cell 2007, 130, s. 395.
- [21] G. Goldstein, M. Scheid, U. Hammerling, D.H. Schlesinger, H.D. Niall, E.A. Boyse, Isolation of a Polypeptide That Has Lymphocyte-Differentiating Properties and Is Probably Represented Universally in Living Cells, Proceedings of the National Academy of Sciences 1975, 72, s. 11.
- [22] A. Gawor, E. Bulska, A Standardized Protocol for Assuring the Validity of Proteomics Results from Liquid Chromatography–High-Resolution Mass Spectrometry, International Journal of Molecular Sciences 2023, 24, s. 6129.
- [23] A. Manadas, V.M. Mendes, J. English, M.J. Dunn, Peptide Fractionation in Proteomics Approaches, Expert Rev Proteomics 2010, 7, s. 655.
- [24] N. Jehmlich, C. Golatowski, A. Murr, G. Salazar, V.M. Dhople, E. Hammer, U. Völker, Comparative Evaluation of Peptide Desalting Methods for Salivary Proteome Analysis, Clinica Chimica Acta 2014, 434, s. 16.
- [25] M. Bantscheff, S. Lemeer, M.M. Savitski, B. Kuster, Quantitative Mass Spectrometry in Proteomics: Critical Review Update from 2007 to the Present, Analytical and Bioanalytical Chemistry 2012, 404, s. 939.
- [26] Z. Li, R.M. Adams, K. Chourey, G.B. Hurst, R.L. Hettich, C. Pan, Systematic Comparison of Label-Free, Metabolic Labeling, and Isobaric Chemical Labeling for Quantitative Proteomics on LTQ Orbitrap Velos, Journal of Proteome Research 2012, 11, s. 1582.
- [27] O. Chahrour, D. Cobice, J. Malone, Stable Isotope Labelling Methods in Mass Spectrometry-Based Quantitative Proteomics, Journal of Pharmaceutical and Biomedical Analysis 2015, 113, s. 2.
- [28] X. Tian, H.P. Permentier, R. Bischoff, Chemical Isotope Labeling for Quantitative Proteomics, Mass Spectrometry Reviews 2021, s. 21709.
- [29] J. Cox, M.Y. Hein, C.A. Luber, I. Paron, N. Nagaraj, M. Mann, Accurate Proteome-Wide Label-Free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ, Molecular and Cellular Proteomics 2014, 13, s. 2513.
- [30] P. Navarro, J. Kuharev, L.C. Gillet, O.M. Bernhardt, B. MacLean, H.L. Röst, S.A. Tate, C.-C. Tsou, L. Reiter, U. Distler, et al., A Multicenter Study Benchmarks Software Tools for Label-Free Proteome Quantification, Nature Biotechnology 2016, 34, s. 1130.
- [31] A. Chawade, M. Sandin, J. Teleman, J. Malmström, F. Levander, Data Processing Has Major Impact on the Outcome of Quantitative Label-Free LC-MS Analysis, Journal of Proteome Research 2015, 14, s. 676.
- [32] M. Sandin, J. Teleman, J. Malmström, F. Levander, Data Processing Methods and Quality Control Strategies for Label-Free LC–MS Protein Quantification, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2014, 1844, s. 29.
- [33] R.R .Lereim, E. Oveland, F.S. Berven, M. Vaudel, H. Barsnes, Visualization, Inspection and Interpretation of Shotgun Proteomics Identification Results. w Modern Proteomics – Sample Preparation, Analysis and Practical Applications, Springer 2016, s. 227.
- [34] C. Christin, R. Bischoff, P. Horvatovich, Data Processing Pipelines for Comprehensive Profiling of Proteomics Samples by Label-Free LC–MS for Biomarker Discovery, Talanta 2011, 83, s. 1209.
- [35] D. Guala, C. Ogris, N. Müller, E.L.L. Sonnhammer, Genome-Wide Functional Association Networks: Background, Data & State-of-the-Art Resources. Briefings in Bioinformatics 2020, 21, s. 1224.
- [36] D. Szklarczyk, A.L. Gable, K.C. Nastou, D. Lyon R., Kirsch, S. Pyysalo, N.T. Doncheva, M. Legeay, T. Fang, P. Bork, et al. The STRING Database in 2021: Customizable Protein–Protein Networks
- [37] nd Functional Characterization of User-Uploaded Gene/Measurement Sets. Nucleic Acids Research 2021, 49, s. D605.
- [38] R. Oughtred, J. Rust, C. Chang, B. Breitkreutz, C. Stark, A. Willems, L. Boucher, G. Leung, N. las, F. Zhang, et al. The BioGRID Database: A Comprehensive Biomedical Resource of Curated otein, Genetic, and Chemical Interactions. Protein Science 2021, 30, s. 187.
- [39] M. Ashburner, C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry, A.P. Davis, K. Dolinski, S.S. Dwight, J.T. Eppig, et al. Gene Ontology: Tool for the Unification of Biology. Nature Genetics 2000, 25, s. 25.
- [40] M. Kanehisa, KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research 2000, 28, s. 27.
- [41] FDA Drug Safety Communication FDA Warns about Increased Risk of Ruptures or Tears in the Aorta Blood Vessel with Fluoroquinolone Antibiotics in Certain Patients. https://www.fda.gov/drugs/drug-safety-and-availability/fda-warns-about-increased-risk-ruptures or-tears-aorta-blood-vessel-fluoroquinolone-antibiotics
- [42] S. Tyanova, T. Temu, J. Cox, The MaxQuant Computational Platform for Mass Spectrometry-Based Shotgun Proteomics. Nature Protocols 2016, 11, s. 2301.
- [43] S. Brohée, J. van Helden, Evaluation of Clustering Algorithms for Protein-Protein Interaction Networks. BMC Bioinformatics 2006, 7, s. 488.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9698eff3-6136-4341-acf0-a3d2c9f88e0c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.