PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechatronic system for verticalization and aiding the motion of the disabled

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mechatronics is nowadays a dominating concept in design of various kinds of systems and technical devices. High speeds of data processing by control units of mechatronic systems, as well as high dynamics of their actuators allow the systems to be applied in wider fields. This refers to the medicine as well, especially while making attempts to replace lost human motor abilities by means of robots aiding the man. These devices can be divided into three groups: exoskeletons designed to strengthen the natural force of human muscles, orthotic robots that restore lost or weakened functions of human limbs, and prosthetic robots replacing an amputated limb. The first and the third group are known quite well, whereas the orthotic robots are at an initial phase of their development. The authors have worked on a device for aiding the motion of disabled people suffering from paresis of the lower limbs. The paper presents a concept and a structure of the system that has been created, comparing it with similar devices that have already existed. There are indicated some connections and areas where the subunits merge, as well as the rules of their working with the user.
Rocznik
Strony
419--431
Opis fizyczny
Bibliogr. 28 poz., rys., wykr., il., diag.
Twórcy
  • Faculty of Mechatronics, Institute of Micromechanics and Photonics, Division of Design of Precision Devices, Warsaw University of Technology, 8 Św. A. Boboli St., 02-525 Warszawa, Poland
  • Faculty of Mechatronics, Institute of Micromechanics and Photonics, Division of Design of Precision Devices, Warsaw University of Technology, 8 Św. A. Boboli St., 02-525 Warszawa, Poland
autor
  • Faculty of Mechatronics, Institute of Micromechanics and Photonics, Division of Design of Precision Devices, Warsaw University of Technology, 8 Św. A. Boboli St., 02-525 Warszawa, Poland
  • Faculty of Mechatronics, Institute of Micromechanics and Photonics, Division of Design of Precision Devices, Warsaw University of Technology, 8 Św. A. Boboli St., 02-525 Warszawa, Poland
autor
  • Faculty of Mechatronics, Institute of Micromechanics and Photonics, Division of Design of Precision Devices, Warsaw University of Technology, 8 Św. A. Boboli St., 02-525 Warszawa, Poland
autor
  • Faculty of Mechatronics, Institute of Micromechanics and Photonics, Division of Design of Precision Devices, Warsaw University of Technology, 8 Św. A. Boboli St., 02-525 Warszawa, Poland
autor
  • Faculty of Mechatronics, Institute of Micromechanics and Photonics, Division of Design of Precision Devices, Warsaw University of Technology, 8 Św. A. Boboli St., 02-525 Warszawa, Poland
  • Faculty of Mechatronics, Institute of Micromechanics and Photonics, Division of Design of Precision Devices, Warsaw University of Technology, 8 Św. A. Boboli St., 02-525 Warszawa, Poland
Bibliografia
  • [1] B. Radziemski, “Elaboration of the design of the dynamic parapodium”, MSc Thesis, Warsaw University of Technology, Warszawa, 2007, (in Polish).
  • [2] Catalog: Rehabilitation Equipment, MISIARZ, Tychy, 2010, (in Polish).
  • [3] K. Kędzior, M. Pawlikowski, and K. Skalski, “Customised prostheses of human joints and orthosis devices”, J. Theoreticaland Applied Mechanics 48 (4), 897-915 (2010).
  • [4] R. Bishop, Mechatronic Systems, Sensors and Actuators. Fundamentalsand Modeling, CRC Press, Boca Raton, 2008.
  • [5] J.L. Pons, Wearable Robots: Biomechatronic Exoskeletons, John Wiley & Sons, Chichester, 2008.
  • [6] R. Bogue, “Exoskeletons and robotic prosthetics: a review of recent developments”, Industrial Robot: Int. J. 36 (5), 421-427 (2009).
  • [7] A.M. Dollar and H. Herr, “Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art”, IEEE Trans. Robotics 24 (1), 144-158 (2008).
  • [8] R.J. Farris, H.A. Quintero, and M. Goldfarb, “Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals”, IEEE Trans. on Neural Systems andRehabilitation Eng. 19 (6) 652-659 (2011).
  • [9] S. Mohammed, and Y. Amirat, “Towards intelligent lower limb wearable robots: challenges and perspectives - state of the art”, Proc. IEEE Int. Conf. ROBIO 2008 1, 312-317 (2009).
  • [10] E. Kiel, Drive Solutions. Mechatronics for Production and Logistics, Springer, Berlin, 2008.
  • [11] M. Gawrysiak, “Mechatronics and mechatronic designing”, BiałystokUniversity of Technology Scientific Works 44, CD-ROM (1997).
  • [12] H. Kawamoto, S. Lee, S. Kanbe, and Y. Sankai , “Power assist method for hal-3 using emg-based feedback controller”, Proc. IEEE Int. Conf. Man and Cybernetics Systems 1, 1648-1653 (2003).
  • [13] Y. Sankai, “Leading edge of cybernics: robot suit HAL”, Int. Joint Conf. SICE-ICASE P-1-P2, CD-ROM (2006).
  • [14] E. Pratt, B. Krupp, C.J. Morse, and S.H. Collins, “The RoboKnee: an exoskeleton for enhancing strength and endurance during walking”, Proc. IEEE ICRA’04 3, 2430-2435 (2004).
  • [15] E. Guizzo and H. Goldstein, “The rise of the body bots”, IEEESpectrum 42 (10), 50-56 (2005).
  • [16] A. Goffer, Gait-locomotor Apparatus, Patent specification No. EP 1260201B1, 10.12.2008.
  • [17] Argo Medical Technologies Ltd., Internet site, www.argomedtec.com (access 21.03.2010).
  • [18] A. Morecki, J. Knapczyk, and K. Kędzior, Theory of Mechanismsand Manipulators. Basics and examples of practicalapplications, Warsaw, WNT, 2002, (in Polish).
  • [19] T. Zielińska, Walking Machines. Fundamentals, Designing,Control and Biological Patterns, Scientific Publishing House of PWN, Warsaw, 2003, (in Polish).
  • [20] J.B. Gonc,alves and D.E. Zampieri, “Recurrent neural network approaches for biped walking robot based on zero-moment point criterion”, J. Braz. Soc. Mech. Sc. Eng. 25, 69-78 (2003).
  • [21] F.M. Teixeira Pereira da Silva and J.A. Tenreiro Machado, “Kinematic analysis and modelling of biped locomotion systems”, J. Braz. Soc. Mech. Sci. 21 (3), 402-413 (1999).
  • [22] Otto Bock, Catalog: Helix3D Hip Joint System. Informationfor Practitioners, Otto Bock HealthCare GmbH, Duderstadt, 2008.
  • [23] J. Gausemeier, S. Kahl, and S. Pook, “From mechatronics to self-optimizing systems”, HNI-Verlagsschriftenreihe 223, 3-34 (2008).
  • [24] M. Lauder, M. Schlereth, S. Rose, and A. Sch¨urr, “Modeldriven systems engineering: state-of-the-art and research challenges”, Bull. Pol. Ac.: Tech. 58 (3), 409-421 (2010).
  • [25] R. Isermann, Mechatronic Systems - Fundamentals, Springer, Berlin, 2005.
  • [26] G. Pelz, Mechatronic Systems. Modelling and Simulation withHDLs, John Wiley and Sons Ltd., Chichester, 2003.
  • [27] T. Zielińska, “Autonomous walking machines - discussion of the prototyping problems”, Bull. Pol. Ac.: Tech. 58 (3), 443-451 (2010).
  • [28] B. Mrozek and Z. Mrozek, MATLAB and Simulink. User’sGuide, ed. 3, Helion, Gliwice, 2010, (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-969718d2-ece7-459e-b99c-5ded8eb15478
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.