PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Multi-trace nonstationary sparse inversion with structural constraints

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The recorded seismic signals are attenuated and spatially correlated due to their propagation through an elastic earth and the sedimentary rule of strata. This attenuation phenomenon is quantifed by means of the earth quality factor (Q) or the attenuation factor (1∕Q). Nowadays, the related Q-compensation and multi-trace inversion for the seismic data are two challenging problems when used for enhancing the temporal resolution and preserving the spatial continuity. Separately estimating Q and refectivity are difcult and produce the uncertainty or ill-condition problems. To overcome these limitations, we have developed a multi-trace nonstationary sparse inversion with structural constraint. Using prior dipping-angle information and refectivity sparsity property, the proposed method simultaneously estimates equivalent-Q and refectivity with structural constraint. Constructed by the source wavelet and diferent scanned equivalent-Q, a series of time-varying (nonstationary) wavelet matrices are provided for the forward-modeling schemes and the corresponding inversions. When the Q-model is infnitely close to the true attenuation mechanism, the corresponding inverted refectivity is comparatively sparse and quantifed as maximum sparsity or minimum sparse representation. A sparse representation function, such as l0.1-norm, is used for sparsity measurement of the inverted refectivity corresponding to each scanned Q. Through optimizing these sparse representation values, a suitable equivalent-Q, as well as the corresponding inverted refectivity with structural preservation and Q-attenuation, is determined. The synthetic and feld examples both confrmed a substantial improvement on seismic records, especially for Q-estimation, structure preservation and Q-compensation.
Czasopismo
Rocznik
Strony
675--685
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
autor
  • State Key Laboratory of Petroleum Resources and Prospecting, CNPC Key Laboratory of Geophysical Exploration, China University of Petroleum, Changping, Beijing 102249, China
autor
  • State Key Laboratory of Petroleum Resources and Prospecting, CNPC Key Laboratory of Geophysical Exploration, China University of Petroleum, Changping, Beijing 102249, China
autor
  • Research Institute of Petroleum Exploration and Development-Northwest, Petrochina, Lanzhou 730020, China
autor
  • State Key Laboratory of Petroleum Resources and Prospecting, CNPC Key Laboratory of Geophysical Exploration, China University of Petroleum, Changping, Beijing 102249, China
  • Sinopec Geophysical Research Institute, Nanjing 211103, China
Bibliografia
  • 1. Akkurt R, Vinegar HJ, Tutunjian PN, Vinegar HJ (1996) NMR logging of natural gas reservoirs. In: Society of Petrophysicists and Well-Log Analysts. SPWLA-1996-v37n6a1
  • 2. Akkurt R, Mardon D, Gardner JS, Marschall DM, Solanet F (1998) Enhanced diffusion: expanding the range of NMR direct hydrocarbon-typing applications. In: Society of Petrophysicists and Well-Log Analysts. SPWLA-1998-GG
  • 3. Bouton JC, Drack ED, Gardner JS, Prammer MG (1996) Measurements of clay-bound water and total porosity by magnetic resonance logging. In: Society of Petrophysicists and Well-Log Analysts. SPWLA-1996-v37n6a3
  • 4. Butler JP, Reeds JA, Dawson SV (1981) Estimating solutions of first kind integral equations with nonnegative constraints and optimal smoothing. SIAM J Numer Anal 18(3):381–397
  • 5. Chen S, Beard D, Gillen M, Fang S, Zhang G (2003a) MR explorer log acquisition methods: petrophysical-objective-oriented approaches. In: Society of Petrophysicists and Well-Log Analysts. SPWLA-2003-ZZ
  • 6. Chen S, Hursan G, Beard D, Georgi D (2003b) Correction for processing multigradient, multiple-NMR log data. In: Society of Petroleum Engineers. SPE-84481-MS
  • 7. Clerke EE, Coates GR, Hartman DE, Horkowitz JP, Vinegar HJ (1997) Residual oil saturation measurements in carbonates with pulsed NMR logs. In: Society of Petrophysicists and Well-Log Analysts. SPWLA-1997-v38n2a2
  • 8. DePavia L, Heaton N, Ayers D, Freedman R, Harris R, Jorion B, Kovats J, Luong B, Rajan N, Taherian R, Walter K, Willis D, Scheibal J, Garcia S (2003) A next-generation wireline NMR logging tool. In: Society of Petroleum Engineers. SPE-84482-MS
  • 9. Dunn KJ, Bergman DJ, LaTorraca GA (2002) Nuclear magnetic resonance: petrophysical and logging applications. Pergamon, New York. ISBN 0-08-043880-6
  • 10. Fang S, Chen S, Tauk R, Fornage P, Georgi D (2004) Quantification of hydrocarbon saturation in carbonate formations using simultaneous inversion of multiple NMR echo trains. In: Society of Petroleum Engineers. SPE-90569-MS
  • 11. Flaum M, Chen C, Hirasaki G (2004) NMR diffusion editing for D-T2 maps -Application to recognition of wettability change. In: Society of Petrophysicists and Well-Log Analysts. SPWLA-2004-JJ
  • 12. Freedman R, Boyd A, Gubelin G, McKeon D, Morriss CE, Flaum C (1997) Measurement of total NMR porosity adds new value to NMR logging. In: Society of Petrophysicists and Well-Log Analysts. SPWLA-1997-OO
  • 13. Freedman R, Heaton N, Flaum M, Hirasaki GJ, Flaum C, Hurlimann M (2002) Wettability, saturation, and viscosity using the magnetic resonance fluid characterization method and new diffusion-editing pulse sequences. In: Society of Petroleum Engineers. SPE-77397-MS
  • 14. George RC, Lizhi X, Manfred GP (1999) NMR logging principles and applications. Gulf Publishing Company, Houston
  • 15. Hirasaki GJ, Lo SW, Zhang Y (2003) NMR properties of petroleum reservoir fluids. Magn Reson Imaging 21(3–4):269–277
  • 16. Hürlimann MD, Venkataramanan L, Flaum C, Speier P, Karmonik C, Freedman R, Heaton N (2002) Diffusion-editing: new NMR measurement of saturation and pore geometry. In: Society of Petrophysicists and Well-Log Analysts. SPWLA-2002-FFF
  • 17. Hürlimann MD, Flaum M, Venkataramanan L, Flaum C, Freedman R, Hirasaki GJ (2003) Diffusion-relaxation distribution functions of sedimentary rocks in different saturation states. Magn Reson Imaging 21(3–4):305–310
  • 18. Hursan G, Chen S, Murphy E (2005) New, NMR two-dimensional inversion of T1/T2 apparent vs. T2 apparent method for gas well petrophysical interpretation. In: Society of Petrophysicists and Well-Log Analysts. Paper GGG
  • 19. McKeon D, Minh CCao, Freedman R, Davies D, Willis D, Gubelin G, Hurlimann M, Harris R, Oldigs R (1999) An improved NMR tool design for faster logging. In: Society of Petrophysicists and Well-Log Analysts. SPWLA-1999-CC
  • 20. Moore MA, Akkurt R (1996) Nuclear magnetic resonance applied to gas detection in a highly laminated Gulf of Mexico turbidite invaded with synthetic oil filtrate. In: Society of Petroleum Engineers. SPE-36521-MS
  • 21. Prammer MG, Mardon D, Coates GR, Miller MN (1995) Lithology-independent gas detection by gradient-NMR logging. In: Society of Petroleum Engineers. SPE-30562-MS
  • 22. Prammer MG, Bouton J, Chandler RN, Drack ED, Miller MN (1998) A new multiband generation of NMR logging tools. In: Society of Petroleum Engineers. SPE-49011-MS
  • 23. Prammer MG, Akkurt R, Cherry R, Menger S (2002) A new direction in wireline and LWD NMR. In: Society of Petrophysicists and Well-Log Analysts. SPWLA-2002-DDD
  • 24. Song YQ, Venkataramanan L, Hürlimann MD, Flaum M, Frulla P, Straley C (2002) T1–T2 correlation spectra obtained using a fast two-dimensional Laplace inversion. J Magn Reson 154(2):261–268
  • 25. Sun B, Dunn KJ (2005a) A global inversion method for multi-dimensional NMR logging. J Magn Reson 172(1):152–160
  • 26. Sun B, Dunn KJ (2005b) Two-dimensional nuclear magnetic resonance petrophysics. Magn Reson Imaging 23(2):259–262
  • 27. Sun B, Dunn KJ, Van Dalen SC, Stonard SW, Al-Rushaid A (2004) Two-dimensional NMR logging and field test results. In: Society of Petrophysicists and Well-Log Analysts. SPWLA-2004-KK
  • 28. Tan M-J, Shi Y-L, Zhao W-J, Xie G-B (2008) Joint inversion method for NMR dual-TW logging data and fluid typing. Chin J Geophys 51(5):1582–1590
  • 29. Venkataramanan L, Song YQ, Hürlimann MD (2002) Solving Fredholm integrals of the first kind with tensor product structure in 2 and 2.5 dimensions. IEEE Trans Signal Process 50(5):1017–1026
  • 30. Winkler M, Freeman J, Appel M (2004) The limits of fluid property correlations used in NMR well logging: an experimental study of reservoir fluids at reservoir conditions. In: Society of Petrophysicists and Well-Log Analysts. SPWLA-2004-DD
  • 31. Zhao P, Wang L, Xu C, Fu J, Shi Y, Mao Z, Xiao D (2020) Nuclear magnetic resonance surface relaxivity and its advanced application in calculating pore size distribution. Mar Pet Geol 111:66–74. https://doi.org/10.1016/j.marpetgeo.2019.08.002
  • 32. Zou YL, Xie RH, Ding YJ, Arad A (2016) Inversion of nuclear magnetic resonance echo data based on maximum entropy. Geophysics 81(1):D1–D8
  • 33. Zou YL, Li J, Su JL, Zhang A (2017) A rapid NMR T2 inversion method based on norm smoothing. Appl Magn Reson 48(10):1043–1053
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9693e4c1-7621-4719-8cc5-24de1767ca90
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.