
Control and Cybernetics

vol. 41 (2012) No. 4

Towards effective social network

system implementation∗

by

Jaroslav Škrabálek, Petr Kunc,
Filip Nguyen and Tomáš Pitner

Masaryk University, Faculty of Informatics,
Lab Software Architectures and IS

Botanická 68a,
602 00 Brno, Czech Republic

{skrabalek, xkunc7, xnguyen, tomp} @fi.muni.cz
http://lasaris.fi.muni.cz

Abstract: In this paper we present our latest research in the
area of social network system implementation. Both business and
technological aspects of social network system development are con-
sidered. There are many tools, languages and methods for devel-
oping large-size software systems and architectures represented by
social network systems. However, no research has been done yet to
uncover the reasons behind the selection and usage of such systems
in terms of choosing the right architecture and data storage. We
describe effective approach to developing specific parts of social net-
work systems with special attention to data layer (using Hadoop,
HBase and Apache Cassandra), which forms the foundation of any
social network system and is highly demanding for performance and
scalability.

Keywords: NoSQL, architecture, social networks, complex
event processing

1. Introduction

Social networks – a millennium’s first decade phenomenon – have enabled users
to connect with people they usually have never seen in person and to live vir-
tual lives, promoted progressive networking, helped people to find a job or just
supported gamification (defined as the infusion of game design techniques, game
mechanics, and/or game style into anything to solve problems and engage au-
diences; see Zichermann & Cunningham, 2011) of regular products and services
as a very engaging marketing channel.

∗Submitted: October 2012; Accepted: November 2012



836 J. ŠKRABÁLEK, P. KUNC, F. NGUYEN, T. PITNER

Size matters. The social networks, unlike common web-based information
systems, represent a supreme discipline of software development. No other in-
formation system, application or web service could attract millions of users with
immensely progressive potential. This unique opportunity cannot be built with-
out a deep requirement analysis including users as main decision makers from
the very early phase and, of course, without a careful selection of functionality.
For designing a social network system, user-centered approach is particularly
crucial. A platform, which social network actually is, takes human perspective
into account. If customers are satisfied, they are more likely to use new ser-
vices and recommend the platform to other potential users, which enables the
growth of the user basis and provide the foundation for future network. The
high number of users indicates high popularity of the platform, which brings
more people in. Furthermore, if people use the product, they provide feedback,
in particular, they report errors and require new features. Their feedback can
lead to significant improvements of the social network and as a result, it can
enhance platform as a whole (see Škrabálek et al., 2011).

Architecture is the key. Architecture of the social network system is like a
backbone. If it is crooked, the growing potential will never be reached and only
a small number of pioneers will use the platform for a limited time and then
they will leave it. Scalability and robustness as well as universal analysis with
advanced level of flexibility will ensure future enhancement, and eventually will
help to completely change the initial intention if users require quite a different
functionality. This is, for example, the case of Takeplace (see Takeplace, 2012)
– a digital and mobile event management platform helping event organizers in
all event management processes. Thanks to precise definition of core functions
followed by an open-minded and foresighted analysis, Takeplace becomes a plat-
form supporting both organizers and community of event attendees to manage
any kind of events of any size from small seminars, consultancy meetings with
20—40 participants up to the conferences with hundreds of attendees, or even
trade shows, fairs and festivals inviting thousands of people. Soft part of the
development such a social network functional requirements, analysis and design
is just the first part within the process of social network system development.
We need to know What to develop but the question How follows immediately.

Persistence. Selecting a proper back-end technology is crucial. In the starting
phases of the platform adoption by users, it is very easy to handle the demand
by standard tools and software approaches one was used to employ in numerous
previous projects. The turning point is different in every project but such a time
will certainly come and everybody will learn how restrictive our past decisions
may be in the case of a social network system. It may even cause the end of
the previously well-evolving platform. Therefore, it is indispensable to consider
modern persistence tools and frameworks like Hadoop from the very beginning
since they support handling big data volumes. The non-relational, distributed
DBMS HBase and NoSQL database solution Cassandra (described later in the



Towards effective social network implementation 837

paper) help developers to keep up with the technological development in time
and preserve the direction with respect to contingencies.

Mobile platforms. Such needs are also accentuated by tremendous advent of
modern mobile platforms. While the front-end development is simplified thanks
to strict usability approaches required by the companies standing behind iOS,
Android or Windows Phone 7, the requirements for cloud-friendly back-ends in-
crease continuously. Regarding the existing social networks Facebook, Twitter,
Instagram or Pinterest the platforms the most people speak about catch around
50 % or more traffic from mobile smartphones and tablets∗. Tablets are increas-
ingly appearing and starting to be used as the main working tool. This change
of ICT utilization paradigm (see Gartner, 2012) will cause enormous demand for
well-developed, not only social network, services and platform solutions in next
five years, capable to handle millions of inquiries as well as huge data storages
in the backend.

This paper is organized as follows. In this section we have discussed business
aspects of social networks. In the second section Technological demands of social

networks and case study we will introduce one important case study together
with its implementation details. The third section is focused on maintainable
implementation of social networks using Cassandra NoSQL database. In the
fourth section we fill in the gaps in social network implementations by describing
monitoring of social networks.

2. Technological demands of social networks and case study

In the domain of social network services, data-oriented architectures and tech-
nologies are widely used as those services demand high data throughput. The
architectures are designed for heavy loads, concurrent requests, and database
can store billions of rows. This section introduces the key features of Hadoop

and HBase (see White, 2009) and describes them in a real application written
in Java using HBase as a persistent storage.

2.1. Hadoop and HBase

The use of NoSQL databases means that the data loses relations, developers
cannot use the Structured Query Language with joins, triggers, or procedures.
Here comes the question why the system architect would want to choose any of
NoSQL databases. The main reason is scalability. The following story describes
how a growing service based on RDBMS usually evolves. Initially, the developers
move the system from local environment to the production one with predefined
schema, triggers, indexes and in normalized form (3NF or 4NF). As the popu-
larity grows, the number of reads and writes increases. Some caching service is
used to improve the read time and the database loses ACID. To improve write

∗While Facebook and Twitter register around 40—60 % of mobile accesses, Instagram is a
purely mobile social network with 90+ % mobile traffic.



838 J. ŠKRABÁLEK, P. KUNC, F. NGUYEN, T. PITNER

time the components of the database server must be enhanced. New features
are added and database schema must be changed – either de-normalized or the
query complexity increases. If the popularity grows further, the server has to be
more powerful (thus expensive) or some functionality must be omitted (triggers,
joins, indexes) (see White, 2009). This is where software framework Hadoop,
developed by Apache, is clearly a better solution as it offers automated and
linear scaling, automatic partitioning and parallel computing. Hadoop consists
of two basic parts:

• MapReduce
• HDFS (Hadoop Distributed File System).

The MapReduce model has been introduced by Google. It consists of two phases
that both read and write data in a key-value format. The map phase divides
the problem into smaller pieces that are then sent by the master node to other
distributed nodes in order to be processed. After solving the current problem
at distributed nodes, data is sent back to the master node which processes the
responses and assembles the solution of the original problem. This model is suit-
able in situations when the application needs to "write once" and "read many"
while traditional RDBMS are designed for frequent data writes or updates. The
MapReduce model is also designed to run on commodity hardware so it deals
with node dropouts: whenever (in the map phase) the node does not answer
in time, the master node just reschedules the problem to other instance. Thus,
the master node is the only bottleneck but there can exist more master nodes
in the MapReduce model. HDFS was designed to store huge files across the
network. The default block size is 64 MiB which improves the seek time and in-
creases transfer rates for vast data. Finally HBase is a non-relational distributed
database based on the Hadoop framework. Tables are automatically distributed
in the cluster in the form of regions. Each region is a data subset defined by
the first row (included), the last row (excluded) and the region identifier. When
the size of data grows so much that it cannot be stored on one machine, they
are automatically split and distributed (usually using HDFS) across the nodes.

HBase data model The basic HBase data model is inspired by Google’s
BigTable. Tables are in fact four-dimensional persistent sorted maps. The
first dimension is a row - any row has a predefined (on the table level) second
dimension – column families. Column families can have variable number of
columns (third dimension) containing the data. The fourth dimension can also
be used: the version – each column can remember x older versions of data stored
in the column. The HBase data model is designed to store billions of rows and
millions of columns. Data have no relations so joining the tables is impossible.
Keys and values are arrays of bytes, so any data can be maintained. A very
simple way to obtain certain data is to access the value of the map by specifying
table row, column family and column. The only possibility to obtain more rows
is to use sequence scanner fetching rows from some interval as the row keys are
stored lexically.



Towards effective social network implementation 839

2.2. Takeplace: case study of the architecture

The architecture will be demonstrated on a working example of a social network
service designed and implemented for the event management platform Takeplace

(see Takeplace, 2012). However, this subsystem can be used in any service.
This goal is achieved by using simple interfaces defining the services. Developer
should implement a communication layer dealing with remote calls (for example,
REST, JSON-RPC or SOAP) or can even call the services directly when using
Java. The communication layer must provide a secure user session identifying
the current user.

2.2.1. Inner architecture

The system alone consists of three-layer structure (see Fig.1) connected by in-
terfaces. The service layer provides services for external calls and also takes care
of basic authorization of operations to be executed. Data access layer retrieves
or stores data from/into the database and its main goal is to transform business
objects into data structures and vice versa. The last layer provides basic CRUD
methods and creates a simple framework for any non-relational databases or
cache. HBase and Memcached are used in this project.

Figure 1. Inner architecture

There are four services available for external calls: Follow (managing in-
teractions among users and providing information about the relations), Wall

(providing interface related to the users’ posts, their own walls and news feeds),



840 J. ŠKRABÁLEK, P. KUNC, F. NGUYEN, T. PITNER

Discussion (comments connected to certain post) and Like (managing users’
favorite posts).

2.2.2. Data model

The data model of the application comprises three tables: walls, entities and
discussions. The table entities (modeling any user) contains five column fam-
ilies: followers, following and blocked contains user ids in columns. The news

column family contains ids of posts on news feed (page which shows posts of
people the user is following). The last column family info contains redundant
data about the numbers of followers, following etc. The table walls stores posts
created by users in the system. The column family info stores basic information
about the post. In the text column family this is only one column containing
the text of the post and the likes column family contains user ids of people who
like the post. The table discussions is similar to the table walls.

2.2.3. Data storage

While working with non-relational databases the key aspect of design is to choose
row identifications as their choice heavily affects performance. The identifica-
tions can describe a relation among data and lexical sorting also defines region
in which this information is stored. Furthermore, the only way to obtain more
rows from the database is the sequence scanner when the rows are sorted lexi-
cally. This is why the row identification has to be chosen wisely. For example,
table walls uses concatenation of the user id and the time of the post, so the
posts are grouped by users and then sorted by time from newest to oldest post.
Lexically it would be the oldest-to-newest posts so we have to invert bytes in the
date format to enable the sequence scanning from the newest posts. Fetching
the wall is fast for each user and there is higher probability that it is stored
on the same region server. Also each entity can view history of its own posts.
There are only weak relations among data. The users (entities) have their posts
and they have their comments. These relations are displayed in names of keys
and developer is responsible for fetching the correct data.

2.2.4. News feed

The only problem with performance occurs when loading the news feed. These
rows of data will be stored across region servers as the row identifier can vary
a lot – as the id of any post is assembled from user identification and time –
so there would be the need to load a post by post to be displayed from each
followed user’s wall – or the system could store the posts in each profile creating
great redundancy. In this case it is suitable to use memory-caching tool. While
sending a new post to the server it is inserted in the cache in a minimized form
(also time to live is set) and the link to it is put into the cached news feed
to every interested (following) user. Thus, we can obtain a news feed in two
cache queries. The first one fetches the list of posts and the second one (batch



Towards effective social network implementation 841

query) returns the posts. Memcached is a hash table in random access memory
providing fast read/write operations. Once the data gets old or Memcached is
full, the expired posts are deleted first and subsequently the least recently used.
The backup of the news feed is stored in HBase as the permanent storage.

2.3. Testing the application

The application was tested using Jakarta JMeter, Netbeans Profiler and private
pilot run. The application was tested on three virtual computers, each simulat-
ing very old commodity hardware (2 GHz and 1 GB RAM) connected with a
100 Mb/s LAN network. On average, one simple follow invocation took 0.5 ms,
fetching the list of one hundred followers and thirty random followers took 2.2
ms (data access time was less than 1 ms). Sending one post to the server con-
sumed 2.58 ms on average and loading wall of 35 posts for a single entity took
about 4 ms. Loading time of an entity’s news feed was 7 ms. A view of profiler
is shown in Fig. 2. On the servers, we got throughput of almost 50 requests per

Figure 2. Profiling

second and the median for loading a simple page which performed one follow
operation was 290 ms. The most important page’s (News Feed) throughput is
44 requests per second and median was 354 ms. Memcached heavily improved
the loading time as data load operation of getting all followers improved almost
1000 times (considering only data read time) as the operation needs a single
request to RAM. The testing data from the pilot run and load tests look really
promising, as the load times are short for common hardware. Next tests we
would like to perform will show the results of this system on cloud services,
robustness of horizontal scaling under heavy load and we also want to perform
tests to compare HBase with MySQL or any other relational database. This
software architecture and data model show how the social subsystem can be



842 J. ŠKRABÁLEK, P. KUNC, F. NGUYEN, T. PITNER

implemented using non-relational databases to allow simple horizontal scaling
as the data amount grows, high throughput and handling of heavy data loads.

3. Maintainable NoSQL data model using Apache Cas-

sandra

This section shows a simple method for developing Data Layer and Data Access
Layer for Social Network written in Java using Cassandra NoSQL database
(see Lakshman & Malik, 2010). To get more information about NoSQL data
stores see Stonebraker (2010, 2011). To access the Cassandra we use Hector
API (Echague et al., 2012) – the most mature API for accessing the Cassandra
today. The data layer is a crucial part of any implementation of social network.
Such implementation must meet the criteria of

1. maintainability
2. usability
3. transparency
4. compile time checking
5. verification.
The (3) above means that the layer is understandable and comprehensible

for new developers, similarly (1) and (2). We are inspired mainly by Fowler
(2002) and Larman (1997).

Lastly, the (4) and (5) are something more unique. Java programming lan-
guage is a language for which an extensive unit testing is very typical. It is
mainly due to the fact that pioneers of the Test Driven Development (TDD)
come from the Java background (Koskela, 2007). To achieve (4), the developers
must use well structured, object oriented, Java API to access their data model.
The definition of “well structured” may be disputed, but a programmer with av-
erage experience can relatively easily - after a short period of experience with the
API - say whether compile time checking may reveal possible problems in this
API (see Martin, 2008). If the API does not meet this well structured criterion,
the developer has to develop a general implementation. We have come to the
conclusion what it means to be the general wrapper. This can be summarized
by Definition of DAL API Generality: "The Data Access Layer API implemen-
tation is said to be general when the implementation need not be changed due
to the business requirements".

The Generality is a necessary condition that has to be met for a maintainable
NoSQL Data Model.

The (5) is a well known requirement for any piece of software written today.
To achieve it, we suggest TDD. In fact, from empirical experience, the TDD
works very well with DAL implementations. There are many reasons for that:

• DAL has well defined inputs and outputs.
• Implementation (querying, creating, deleting) is more complicated than

testing.
• It is time consuming to test DAL manually, mainly because of the setup/

teardown of test methods. Also note that manual DAL testing is error



Towards effective social network implementation 843

prone because the tester will give a lot of false positives.
Justification of reasons why TDD works well with DAL is unfortunately out

of the scope of this paper.
Simply by using Java programming language and Cassandra NoSQL database,

the solution gets several extra benefits for free:
• openness
• multi-platformity
• easily test driven
• robustness.
Both Java and Cassandra NoSQL database are free of charge and multi-

platform – running under JVM. The robustness of Cassandra may be claimed
because it was used as Facebook’s backing storage for inbox search. Finally, it
is possible to embed Cassandra into automated tests.

The goal of this section is to explain how to achieve data model for a social
network. A small part of data model for the social network is given. A test
driven approach is applied for this model and data access layer (DAO) classes
are defined. The DAO layer is a way for a programmer to access the actual
data. The rest of the section is devoted to explaining aspects of the DAO layer
and TDD to give a detailed insight into the techniques.

3.1. Example

In this section we show how data can be queried. We also present basic objects to
access the DAL layer of the social network. Almost every social network should
contain the entity Person. Assume that Person has two attributes: name and
email. Such a data model is implemented in Java by creating POJO (plain old
java object) – object that has no dependencies but Java SDK (standard devel-
opment kit). Listings for Person.java shows a possible person implementation.

Person.java

public class Person implements Serializable {

private String id;

private String name;

private String email;

//Getters and setters

...

}

Another part of the data model is the Cassandra Layer. To create an entity in
the NoSQL database, Column Families abstraction is used. It is out of the scope
of this paper to introduce this concept. The basic idea is that column families
are created from source code. This allows good automation and maintainability.
Following listing shows such a usage for the Person class:

CassandraBootstraper.java

public class CassandraBootstraper {

public void recreateKeyspace(){

...



844 J. ŠKRABÁLEK, P. KUNC, F. NGUYEN, T. PITNER

ColumnFamilyDefinition cfd =

HFactory.createColumnFamilyDefinition(

keyspace,

DBConstants.CF_PEOPLE,ComparatorType.UTF8TYPE);

c.addColumnFamily(cfd);

}

}

Note that when working with the NoSQL database, we are not creating any
column definitions. We just define the column family for holding collection of
Person data objects. We do not define the schema for attributes (name or email)
in any way. Those are added at runtime of the application. The last important
piece of code is DAO – Data Access Object. This object is responsible for CRUD
operations (Create Read Update Delete) on the entities. There is one DAO for
each Entity, hence PersonDAO. Lets take a look at an example of PersonDAO.

PersonDAO.java

@Repository

public class PersonDAO extends DAO {

...

public List<Person> findUsersByName(Set<String> names) {

Rows<String, String, String> result =

findRows(DBConstants.CF_USERS,

names, new StringSerializer());

List<Person> users = parseUsersFromResult(result);

return users;

}

}

The example shows the read method for getting Person data objects from
NoSQL database by their names. The PersonDAO extends the base DAO class
that contains utility methods like findRows. The method parseUsersFromResult

is a private method of PersonDAO for parsing the name and email from the
database.

3.2. Data layer

While basic Entity-Relationship modeling techniques are well known and stud-
ied for years, the NoSQL databases require a different approach. Data in NoSQL
database is highly denormalized to gain performance. The data also allow great
flexibility in adding new attributes to entities already in the database. When
building social network, it is advisable that no proprietary scripts are intro-
duced.

By the Generality Definition we can create a general implementation of boot-

strapping mechanism. The mechanism is based on the idea that all the test data
+ schema of the database will be created using the same programming tech-
niques (Java) as is used at runtime. The programmer should use a dedicated
class. We name this class Bootstrapper in our case. This class has the following
responsibilities:

• connect the Cassandra instance



Towards effective social network implementation 845

• create schema in empty Cassandra database
• insert test data.

Bootstrapper helps better maintainability because information about schema
are versioned in this Bootstrapper class (using Subversion). Bootstrapper also
helps testability of code, because unit tests can directly invoke Bootstrappers
methods.

To implement a DAO Layer to access Cassandra Database it is advisable to
use Hector API because it gives a lot of enterprise level features out of the box.
The API introduces a lot of clutter. That is why the best approach to implement
DAO is to create base class with general implementation for following actions:

• findRows (columnFamily, keys, resultSerializer) - finds rows with given
keys

• findAllRows (columnFamily) - all rows in given family
• findAllObjectRows (columnFamily, objectColumnName) - deserializes the

object from given column
• deleteColumn, addColumn, findObjectColumn.

By creating this abstraction the developer can tinker it for a specific social
network.

Another important technique to be used for Java+Cassandra DAO layer
is Aspect Oriented Programming (AOP). We introduced ErrorHandlingAspect

that is responsible for improving error handling on DAL. The AOP is invaluable
in these situations. Reasons stem from the nature of DAL. DAO objects have
methods specific for the given entity (Person may have attachMessage, which
is unique for this entity). It is important that the exception be caught inside
of these methods to have bigger picture of the error (parameters, name of the
method) and not having to inspect the stack trace. AOP gives us this flexibility.
The only thing needed is to declare AfterThrowing aspect on all DAO methods.
Apart from the error handling, by using AOP we can easily log parameters
entering each DAO method.

TDD is a very advisable technique for DAL implementation for applications
using NoSQL Database. As the data is highly denormalized and unstructured,
it is easy to introduce regression bugs into the code. In-memory Cassandra
instance can help to create test suites.

4. Reactive social network monitoring

When studying implementations we came to the conclusion that high volume
traffic applications like social networks need very specific approach to their moni-
toring and also special reactive rules for certain actions happening in the system.
This section lays out our findings and latest results from this area. Our results
contain both the general framework for deploying such monitoring/reactive in-
frastructure and best practices to use them.



846 J. ŠKRABÁLEK, P. KUNC, F. NGUYEN, T. PITNER

4.1. Monitoring

The monitoring is a basic activity done in any system being in the production or
testing phase. We have found out that in many cases, current monitoring options
for data model state changes are not sufficient for such large scale systems
because of the following reasons:

• The amount of data generated by social networks is enormous.
• Data changes in social networks may not be deterministic. Furthermore

they can be without strict time successions due to a distributed nature
of the data model. This is acceptable from the point of view of the user
because social networks do not usually contain any time critical informa-
tion.

Having the data on a logical node is very convenient (logical node is, for
example, one pluggable component in our layered architecture). The conve-
nience materializes itself in terms of having the right monitoring information in
one place for processing. Several problems arise with this approach. A badly
written component (logical node) may create a bottleneck itself for monitoring
information processing. However, the biggest problem is that logical nodes do
not respect availability of data over the cluster of data nodes. Data must be
moved back and forth between nodes causing serious performance issues.

Data node is, for example, Apache Cassandra cluster node instance. This
is the best option from the performance point of view. Having the monitoring
information on this node data is not transferred via network nor moved across
different file systems for processing. There are, however, certain subtle prob-
lems with this approach. No correlation can be done for disparate monitoring
information. However, these disparate monitoring information pieces are often
related.

4.2. Reactive rules

During the implementation of our case studies – social networks – we were of-
ten faced with the necessity to react to specific extreme cases in a dynamic
fashion. For example, when a user sends too many notifications per minute,
his/her throughput of messages should be limited until his/her payment credi-
bility is checked. Another example might be a situation where continually more
respected user has his/her limits relaxed (usual functionality of cloud services
from Amazon).

4.3. Methods

At first, we thought that our problems with monitoring and reactive rules are
not related. We believed that a combination of business process execution lan-

guage and modification of Apache Cassandra logging system will solve the issues.
However, we have found a common solution that solves both problems. We in-
troduced Complex Event Processing into the monitoring processing and reactive
rules processing. The CEP concept is introduced in Etzion (2011) and Luckham



Towards effective social network implementation 847

Figure 3. Data monitoring

(2002). The viability of using CEP in distributed environment is supported by
several studies in this area, e.g. Lakshmanan, Rabinovitch & Etzioni (2009)
and Luckham & Frasca (1998).

CEP solves the dilemma of placing monitoring onto the logical node and
a data node. We choose to put the CEP engines on data nodes and connect
them based on logical partitioning done by Cassandra. In this way, different
Cassandra nodes are monitored together. The situation is depicted in Fig. 3.
In this figure we see five data nodes. A central monitoring CEP engine is
used to correlate all monitoring information on high level of abstraction. It
does not get all the fine levels of logging messages (e.g. save of particular
discussion post in social network) but receives only high-level events that will
indicate that some data nodes need a finer analysis. In Fig. 4 we see that
central monitoring engine decided that Data Node 1 and Data Node 2 should
be analyzed together. Analogically, the rest of the data nodes were assigned
with C2 monitoring engine. This architecture allows us to scale monitoring
infrastructure very flexibly and automatically.

The issue with reactive rules is solved by publishing events to the service
tier of the application from the data tier. Fig. 4 depicts this connection. The
connection is in fact the same approach as the solution to the monitoring. We
use the monitoring information to gather "hard to get" information without
need to go deep into the application logic. In this way we can achieve both
scenarios mentioned in the previous section. We can easily monitor how many
notifications user sent in a given time window, and through connection to the
service layer we can publish this monitoring information. The service layer picks



848 J. ŠKRABÁLEK, P. KUNC, F. NGUYEN, T. PITNER

up this event and acts accordingly by limiting user quota.

Figure 4. Data layer to Service layer connection

5. Conclusion

In this paper we have presented our current research and development results in
the area of social network system development. We showed proper usage of ex-
isting frameworks, languages and rationale behind their usage. For a developer,
project manager or businessman, being aware of existing tools, their proper im-
plementation and foresight of the future development with close collaboration
with users will help to achieve success of the platform and its establishment on
the market.

References

Echague, P., McCall, N. et al. (2012) Hector – A high level Java client

for Apache Cassandra. http://hector–client.github.com/ hector/ build/
html/ index. html. Visited at 11/1/2012.

Etzion, O., Niblett, P. (2011) Event Processing in Action. Manning Pub-
lications, Shelter Island, USA.

Fowler, M. (2002) Patterns of Enterprise Application Architecture. Addison-
Wesley Professional, USA.

Gartner (2012) Gartner Identifies the Top 10 Strategic Technologies for 2012
http://www.gartner.com/it/page.jsp?id=1826214. Visited at 11/1/2012.

Koskela, L. (2007) Test Driven: TDD and Acceptance TDD for Java Devel-

opers. Manning Publications, Shelter Island, USA.
Lakshmanan, G. T., Rabinovich, Y. G., Etzion, O. (2009) A stratified

approach for supporting high throughput event processing applications.
Proceedings of the Third ACM International Conference on Distributed

Event-Based Systems, Article 5. ACM, New York, USA.



Towards effective social network implementation 849

Lakshman, A., Malik, P. (2010) Cassandra - A Decentralized Structured
Storage System. ACM SIGOPS Operating Systems Review archive, 44, 2,
35-40.

Larman, C. (1997) Applying UML and Patterns. 1st edition. Prentice Hall,
Boston, USA.

Lin, J., Dyer, C. (2010) Data-intensive text processing with Mapreduce. Syn-

thesis Lectures on Human Language Technologies, Morgan and Claypool
Publishers, USA.

Luckham, D. (2002) The Power of Events: An Introduction to Complex Event

Processing in Distributed Enterprise Systems. Addison-Wesley Profes-
sional, USA.

Luckham, D., Frasca, B. (1998) Complex Event Processing in Distributed

Systems. Standford University, 28.
Martin, R. (2008) Clean Code: A Handbook of Agile Software Craftsmanship.

Prentice Hall, Boston, USA.
Stonebraker, M. (2011) Stonebraker on NoSQL and enterprises. Commu-

nications of the ACM, 54, 10-11.
Stonebraker, M. (2010) SQL databases vs. NoSQL databases. Communi-

cations of the ACM, 53, 10-11.
Škrabálek, J., Tokárová, L., Slabý, J. and Pitner, T. (2011) Integra–

ted Approach in Management and Design of Modern Web-Based Services.
Springer, New York, USA.

Takeplace (2012) An Event Management System http://take-place.com. Vis-
ited at 11/1/2012.

White, T. (2009) Hadoop: The Definitive Guide. O’Reilly Media, California,
USA.

Zichermann, G. and Cunningham, C. (2011) Gamification by Design: Im-

plementing Game Mechanics in Web and Mobile Apps. O’Reilly Media,
Canada.


