Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this note we show that for the finite Coxeter groups of types An, Bn, Dn, F4, G2 and I2 (m) it is possible to choose an appropriate set S of generators of order not greater than 2 and a finite set of probability measures {μ1,…, μk} with their supports in S such that μ1∗…∗ μk = λ, where λ (g) = |G|−1 for every g ∈ G.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
173--180
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
- Institute of Mathematics, University of Wrocław. pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
Bibliografia
- [1] N. Bourbaki, Groupes et algèbres de Lie, Ch. 5, 6, 7, Hermann, 1968.
- [2] P. Diaconis, Group Representations in Probability and Statistics, Institute of Mathematical Statistics Lecture Notes - Monograph Series 11, Institute of Mathematical Statistics, Hayward, CA, 1988.
- [3] P. Diaconis, Application of non-cummutative Fourier analysis to probability problems, Lecture Notes in Math. No 1362, Springer, 1982, pp. 51-100.
- [4] M. Geck and G. Pfeiffer, Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras, London Math. Soc. Monographs, 2000.
- [5] U. Grenander, Probability on Algebraic Structures, Wiley, New York 1963.
- [6] L. C. Grove and C. T. Benson, Finite Reflection Groups, Graduate Texts in Math. 99, Springer, 1985.
- [7] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. 2, Springer, Berlin 1970.
- [8] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press, Cambridge-New York 1990.
- [9] J. P. Serre, Linear Representation of Finite Groups, Springer, New York 1977.
- [10] M. Ullrich and K. Urbanik, A limit theorem for random variables in compact topological groups, Colloq. Math. 7 (1960), pp. 191-198.
- [11] R. Urban, Some remarks on the random walk on finite groups, Colloq. Math. 74 (1997), pp. 287-298.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-968f080d-9c40-4ce9-bfe3-ef66b942c19b