PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal decomposition characterization of supergene potassium-jarosite and sodium-jarosite minerals from the northern Tibetan Plateau, China

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The thermal decomposition of supergene potassium-jarosite and sodium-jarosite samples from the weathering profiles of sulfide deposits in the northern Tibetan Plateau, China, was investigated. Electron microprobe, scanning electron microscopy, and X-ray diffraction analyses indicated the presence of nearly pure potassium-jarosite and sodium-jarosite. Thermogravimetric analysis of the potassium-jarosite sample revealed mass losses of 11.39 wt% at 443.0 °C, 20.99 wt% at 688.3 °C, and 3.18 wt% at 779.3 °C. The thermogravimetric analysis of sodium-jarosite revealed mass losses of 11.72 wt% at 447.5 °C, 21.32 wt% at 682.6 °C, and 3.70 wt% at 716.5 °C. The results provide no evidence for water-molecule loss below 400 °C, as has been reported previously for natural potassium-jarosite and sodium-jarosite. Thermal-decomposition mechanisms have been proposed for potassium-jarosite and sodium-jarosite based on X-ray diffraction analyses of samples obtained at distinct points along the respective thermal decomposition processes. A comparison of the thermal analysis patterns of potassium-jarosite and sodium-jarosite indicates that sodium-jarosite undergoes the initiation of lattice destruction at a higher temperature.
Rocznik
Strony
459--466
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
  • MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
Bibliografia
  • ALPERS, C. N., BRIMHALL, G. H., 1989. Paleohydrologic evolution and geochemical dynamics of cumulative supergene metal enrichment at La Escondida, Atacama Desert, northern Chile. Econ. Geol., 84, 229–255.
  • CHEN, L., 2012. Mineralogy, geochemistry and 40Ar/39Ar geochronology of supergene minerals from typical sulfide deposits, NE Tibetan Plateau. PhD thesis China University of Geosciences, Wuhan, 180.
  • CHEN, L., LI, J., 2014. 40Ar/39Ar ages and stable isotopes of supergene jarosite from the Baiyin VHMS ore field, NE Tibetan Plateau with paleoclimatic implications. Chinese Sci. Bull., 59, 2999-3009.
  • CHEN, L., LI, J., RYE, R. O., BENZEL, W. M., LOWERS, H. A., HE, M., 2013. Mineralogical, chemical, and crystallographic properties of supergene jarosite-group minerals from the Xitieshan Pb-Zn sulfide deposit, northern Tibetan Plateau, China. Miner. Petrol., 107, 487-499.
  • DESBOROUGH, G. A., SMITH, K. S., LOWERS, H. A., SWAYZE, G. A., HAMMARSTROM, J. M., DIEHL, S. F., LEINZ, R. W., DRISCOLL, R. L., 2010. Mineralogical and chemical characteristics of some natural jarosites. Geochim. Cosmochim. Ac., 74, 1041–1056.
  • DROUET, C., NAVROTSKY, A., 2003. Synthesis, characterization, and thermochemistry of K-Na-H3O jarosites. Geochim. Cosmochim. Ac., 67, 2063–2076.
  • DUTRIZAC, J. E., JAMBOR, J. L., 2000. Jarosites and their application in hydrometallurgy. Rev. Mineral. Geochem., 40, 405–452.
  • FROST, R. L., WEIER, M. L., MARTENS, W., 2005. Thermal decomposition of jarosites of potassium, sodium and lead. J. Therm. Anal. Calorim., 82, 115–118.
  • FROST, R. L., WILLS, R. A., KLOPROGGE, J. T., MARTENS, W. N., 2006. Thermal decomposition of hydronium jarosite (H3O)Fe3(SO4)2(OH)6. J. Therm. Anal. Calorim., 83, 213–218.
  • JAMBOR, J. L., 1999. Nomenclature of the alunite supergroup. Can. Mineral., 37, 1323–1341.
  • KUBISZ, J., 1971. Studies on Synthetic alkali-hydronium jarosites. II. Thermal investigations. Mineralogia Polonica, 2, 51–66.
  • KULP, J. L., ADLER, H. H., 1950. Thermal study of jarosite. Am. J. Sci., 248, 475–487.
  • NIELSEN, U. G., MAJZLAN, J., PHILLIPS, B., ZILIOX, M., GREY, C. P., 2007. Characterization of defects and the local structure in natural and synthetic alunite (K, Na, H3O)Al3(SO4)2(OH)6 by multi-nuclear solid-state NMR spectroscopy. Am. Mineral., 92, 587–597.
  • RYE, R. O., ALPERS, C. N., 1997. The stable isotope geochemistry of jarosite. U.S. Geol. Surv. Open-File Rep., 88–97.
  • RYE, R. O., BETHKE, P. M., LANPHERE, M. A., STEVEN, T. A., 2000. Neogene geomorphic and climatic evolution of the central San Juan Mountains, Colorado: K/Ar age and stable isotope data on supergene alunite and jarosite from the Creede mining district. Geological Society of America Special Papers, 346, 95–103.
  • SCOTT, K. M., 1987. Solid solution in, and classification of, gossan-derived members of the alunite-jarosite family, Northwest Queensland, Australia. Am. Mineral., 72, 178–187.
  • STOFFREGEN, R. E., ALPERS, C. N., JAMBOR, J. L., 2000. Alunite-Jarosite crystallography, thermodynamics, and geochronology. Rev. Mineral. Geochem., 40, 453–479.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-968d3c62-dcc8-48d3-bccf-acdcfa4a66f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.