PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Shape and packing effects in particulate composites: micromechanical modelling and numerical verification

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study is to analyse the joint effect of reinforcement shape and packing on the effective behaviour of particulate composites. The proposed semi-analytical modelling method combines the Replacement Mori-Tanaka scheme, by means of which the concentration tensors for non-ellipsoidal inhomogeneities are found numerically, and the analytical morphologically representative pattern approac to account for particle packing. Five shapes of inhomogeneities are selected for the analysis: a sphere, a prolate ellipsoid, a sphere with cavities, an oblate spheroid with a cavity as well as an in homogeneity created by three prolate spheroids crossing at right angles. Semi-analytical estimates are compared with the results of numerical simulations performed using the finite element method and with the outcomes of classical mean-field models based on the Eshelby solution, e.g. the Mori–Tanaka model or the self-consistent scheme.
Rocznik
Strony
art. no. e86, 1--22
Opis fizyczny
Bibliogr. 46 poz., il., tab., wykr., wzory
Twórcy
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
  • Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
Bibliografia
  • 1. Olson G. Computational design of hierarchically structured materials. Science. 1997;277:1237-42. https://doi.org/10.1126/ science.277.5330.1237.
  • 2. Matouš K, Geers MGD, Kouznetsova VG, Gillman A. A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials. J Comput Phys. 2017;330:192-220.
  • 3. Clyne TW, Hull D. An introduction to composite materials. 3rd ed. Cambridge: Cambridge University Press; 2019.
  • 4. Rajak DK, Pagar DD, Kumar R, Pruncu CI. Recent progress of reinforcement materials: a comprehensive overview of composite materials. J Mater Res Technol. 2019;8:6354-74. https://doi.org/10.1016/j.jmrt.2019.09.068.
  • 5. Christensen RM. A critical evaluation for a class of micromechanics models. J Mech Phys Solids. 1990;38:379-404.
  • 6. Eshelby JD. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc A-Math Phy.1957;241:376-96. https://doi.org/10.1098/rspa.1957.0133.
  • 7. Kanaun SK, Levin VM. Self-consistent methods for composites, vol 1: static problems. Dordrecht: Springer; 2008. p. 172-186.
  • 8. Castaneda PP, Willis JR. The effect of spatial distribution on the effective behavior of composite materials and cracked media. J Mech Phys Solids. 1995;43:1919-1951. https://doi.org/10.1016/0022- 5096(95) 00058-Q.
  • 9. Torquato S. Effective stiffness tensor of composite media: II. Applications to isotropic dispersions. J Mech Phys Solids. 1998;46:1411-40.
  • 10. Marcadon V, Herve E, Zaoui A. Micromechanical modeling of packing and size effects in particulate composites. Int J Solids Struct. 2007;44:8213-28.
  • 11. Majewski M, Kursa M, Holobut P, Kowalczyk-Gajewska K. Micromechanical and numerical analysis of packing and size effects in elastic particulate composites. Compos B Eng. 2017;124:158-174. https://doi.org/10.1016/j.compositesb.2017.05.004.
  • 12. Diani J, Gilormini P, Merckel Y, Vion-Loisel F. Micromechanical modeling of the linear viscoelasticity of carbon-black filled styrene butadiene rubbers: the role of the filler-rubber interphase. Mech Mater. 2013;59:65-72.
  • 13. Majewski M, Holobut P, Kursa M, Kowalczyk-Gajewska K. Packing and size effects in elastic-plastic particulate composites: micromechanical modelling and numerical verification. Int J Eng Sci. 2020;151:103271.
  • 14. Chaboche JL, Kanouté P, Roos A. On the capabilities of mean field approaches for the description of plasticity in metal matrix composites. Int J Plast. 2005;21:1409-1434.
  • 15. Sevostianov I, Mogilevskaya SG, Kushch VI. Maxwell’s methodology of estimating effective properties: alive and well. Int J Eng Sci. 2019;140:35-88. https:// doi.org/10.1016/j.ijeng sci.2019. 05.001.
  • 16. Kowalczyk-Gajewska K, Majewski M, Mercier S, Molinari A. Mean field interaction model accounting for the spatial distribution of inclusions in elastic viscoplastic composites. Int J Solids Struct. 2021;224:111040.
  • 17. Segurado J, Llorca J. Computational micromechanics of composites: the effect of particle spatial distribution. Mech Mater. 2006;38:873-883. https://doi.org/10. 016/j. mechmat.2005.06.026.
  • 18. Dastgerdi JN, Anbarlooie B, Miettinen A, Hosseini-Toudeshky H, Remes H. Effects of particle clustering on the plastic deformation and damage initiation of particulate reinforced composite utilizing X-ray CT data and finite element modeling. Compos B Eng. 2018;153:57-69.
  • 19. Escoda J, Willot F, Jeulin D, Sanahuja J, Toulemonde C. Influence of the multiscale distribution of particles on elastic properties of concrete. Int J Eng Sci. 2016;98:60-71.
  • 20. de Francqueville F, Gilormini P, Diani J, Vandenbroucke A. Comparison of the finite strain macroscopic behavior and local damage of a soft matrix highly reinforced by spherical or polyhedral particles. Eur J Mech A Solids. 2020;84:104070.
  • 21. Liu LP. Solutions to the Eshelby conjectures. Proc R Soc A-Math Phys. 2008;464:573-594. https://doi.org/10.1098/rspa. 2007.0219.
  • 22. Klusemann B, Böhm HJ, Svendsen B. Homogenization methods for multi-phase elastic composites with non-elliptical reinforcements: comparisons and benchmarks. Eur J Mech A Solids. 2012;34:21-37.
  • 23. Zheng QS, Du DX. An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution. J Mech Phys Solids. 2001;49:2765-2788.
  • 24. Du DX, Zheng QS. A further exploration of the interaction direct derivative (IDD) estimate for the effective properties of multiphase composites taking into account inclusion distribution. Acta Mech. 2002;157:61-80.
  • 25. Nogales S, Böhm HJ. Modeling of the thermal conductivity and thermomechanical behavior of diamond reinforced composites. Int J Eng Sci. 2008;46:606-19. https://doi.org/10.1016/j.ijeng sci.2008.01.011.
  • 26. Kachanov M, Tsukrov I, Shafiro B. Effective moduli of solids with cavities of various shapes. Appl Mech Rev. 1994;47:151-174. https://doi org 10 1115/1 3122810.
  • 27. Segurado J, Llorca J. A numerical approximation to the elastic properties of sphere-reinforced composites. J Mech Phys Solids. 2002;50:2107-21.
  • 28. Hassani B, Hinton E. A review of homogenization and topology optimization I - homogenization theory for media with periodic structure. Comput Struct. 1998;69:707-717.
  • 29. Ranganathan SI, Ostoja-Starzewski M. Scaling function, anisotropy and the size of RVE in elastic random polycrystals. J Mech Phys Solids. 2008;56:2773-91.
  • 30. Hashin Z. The elastic moduli of heterogeneous materials. J Appl Mech. 1962;29:143-150. https://doi.org/10.1115/1.3636446.
  • 31. Herve E, Zaoui A. n-Layered inclusion-based micromechanical modelling. Int J Eng Sci. 1993;31:1-10.
  • 32. Hori M, Nemat-Nasser S. Double-inclusion model and overall moduli of multi-phase composites. Mech Mater. 1993;14:189-206.
  • 33. Suquet P. Effective properties of nonlinear composites. In: Suquet P, editor. Continuum micromechanics. Vienna: Springer; 1997. p. 197-264
  • 34. Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 1973;21:571-574.
  • 35. Schöberl J. NETGEN - an advancing front 2D/3D-mesh generator based on abstract rules. Comput Vis Sci. 1997;1:41-52.
  • 36. Korelc J. Multi-language and multi-environment generation of nonlinear finite element codes. Eng Comput. 2002;18:312-27. https://doi.org/10.1007/s0036 60200 028.
  • 37. Markov A, Trofimov A, Sevostianov I. A unified methodology for calculation of compliance and stiffness contribution tensors of in homogeneities of arbitrary 2D and 3D shapes embedded in isotropic matrix - open access software. J Mech Phys Solids. 2020;157:103390.
  • 38. Kowalczyk-Gajewska K, Ostrowska-Maciejewska J. Review on spectral decomposition of Hooke’s tensor for all symmetry groups of linear elastic material. Eng Trans. 2009; 57:145-183.
  • 39. Šmilauer V et al. Yade Documentation. 3rd ed. The Yade Project. Zenodo; 2021. https:/doi.org/10.5281/zenodo.5705394.
  • 40. Mazzucco G, Pomaro B, Salomoni VA, Majorana CE. Numerical modelling of ellipsoidal inclusions. Constr Build Mater. 2018;167:317-324.
  • 41. Kursa M, Kowalczyk-Gajewska K, Petryk H. Multi-objective optimization of thermo-mechanical properties of metal-ceramic composites. Compos B Eng. 2014;60:586-596.
  • 42. Hill R. Continuum micro-mechanics of elastoplastic polycrystals. J Mech Phys Solids. 1965;13:89-101.
  • 43. Kowalczyk-Gajewska K, Maździarz M. Elastic properties of nanocrystalline materials of hexagonal symmetry: the core-shell model and atomistic estimates. Int J Eng Sci. 2020;157:103393.
  • 44. Celentano DJ, Chaboche JL. Experimental and numerical characterization of damage evolution in steels. Int J Plast. 2007;23:1739-62.
  • 45. Steinmann P. Formulation and computation of geometrically nonlinear gradient damage. Int J Numer Methods Eng. 1999;46:757-779.
  • 46. Rutecka A, Kursa M, Pietrzak K, Kowalczyk-Gajewska K, Makowska K, Wyszkowski M. Damage evolution in AA2124/SiC metal matrix composites under tension with consecutive un loadings. Arch Civ Mech. 2020;20:135. https://doi.org/10.1007/s43452- 020- 00134-x.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-968c6d2a-c6c4-43ce-b7b0-c8beb2f399e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.