PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multichannel sparse spike deconvolution based on dynamic time warping

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Seismic sparse spike deconvolution is commonly used to invert for subsurface refectivity series and is usually implemented as an inversion scheme. Conventional sparse spike deconvolution method does not utilize the relationships among adjacent traces resulting in instability and poor lateral continuity of the inverted result. We propose a multichannel sparse spike deconvolution method with a sparsity-promoting constraint and an extra lateral constraint exploiting the spatial relationships among adjacent seismic traces. Firstly, the dynamic time warping (DTW) is performed between any two adjoining seismic traces to obtain the warping path (a series of estimated time shifts of one seismic trace relative to the other). Based on the assumption that if the inverted refectivity series is convolved with the same wavelet used for inversion, the newly constructed adjoining seismic traces shall also be conformable to the relationships exploited among the original seismic traces by DTW. A diference operator is constructed with the estimated time shifts to guarantee the diference operation is performed between corresponding time samples on adjoining seismic traces and the inversion is regularized with this diference operator as the lateral constraint. Synthetic and real data case studies confrm that inverted result obtained by the proposed method is superior to those obtained by single-channel sparse spike deconvolution method and another multichannel deconvolution method based on horizontal frst-order derivative constraint in both signal-to-noise ratio and lateral continuity.
Czasopismo
Rocznik
Strony
783--793
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
  • State Key Laboratory of Petroleum Resources and Prospecting, CNPC Key Laboratory of Geophysical Exploration, China University of Petroleum, Changping, 102249 Beijing, China
autor
  • State Key Laboratory of Petroleum Resources and Prospecting, CNPC Key Laboratory of Geophysical Exploration, China University of Petroleum, Changping, 102249 Beijing, China
autor
  • State Key Laboratory of Petroleum Resources and Prospecting, CNPC Key Laboratory of Geophysical Exploration, China University of Petroleum, Changping, 102249 Beijing, China
autor
  • State Key Laboratory of Petroleum Resources and Prospecting, CNPC Key Laboratory of Geophysical Exploration, China University of Petroleum, Changping, 102249 Beijing, China
  • CNOOC Ltd Tian Jin Branch, 300459 Tianjin, China
autor
  • Exploration and Development Research Institute, PetroChina Huabei Oilfeld Company, 062552 Renqiu, Hebei, China
Bibliografia
  • 1. Aminzadeh F, Burehard N, Kunz T, Nicoletis L, Rocca F (1995) 3-D modeling project: 3rd report. Lead Edge 14:125–128. https://doi.org/10.1190/1.1437102
  • 2. Du X, Li G, Zhang M, Wang W (2018) Multichannel band-controlled deconvolution based on a data-driven structural regularization. Geophysics 83(5):R401–R411. https://doi.org/10.1190/GEO2017-0516.1
  • 3. Gholami A, Sacchi MD (2013) Fast 3D blind seismic deconvolution via constrained total variation and GCV. SIAM J Imaging Sci 6:2350–2369. https://doi.org/10.1137/130905009
  • 4. Hale D (2013) Dynamic warping of seismic images. Geophysics 78(2):S105–S115. https://doi.org/10.1190/geo2012-0327.1
  • 5. Hamid H, Pidlisecky A (2016) Structurally constrained impedance inversion. Interpretation 4(4):T577–T589. https://doi.org/10.1190/INT-2016-0049.1
  • 6. Hansen PC (1998) Rank-deficient and discrete Ill-posed problems: numerical aspects of linear inversion. SIAM, Philadelphia. https://doi.org/10.1137/1.9780898719697
  • 7. Kazemi N, Sacchi MD (2014) Sparse multichannel blind deconvolution. Geophysics 79(5):V143–V152. https://doi.org/10.1190/GEO2013-0465.1
  • 8. Li Y, Oldenburg DW (2000) Incorporating geological dip information into geophysical inversions. Geophysics 65(1):148–157. https://doi.org/10.1190/1.1444705
  • 9. Ma M, Wang S, Yuan S, Wang J, Wen J (2018) Multichannel spatially correlated reflectivity inversion using block sparse Bayesian learning. Geophysics 82(4):V191–V199. https://doi.org/10.1190/GEO2016-0366.1
  • 10. Ma X, Li G, Li H, Yang W (2020a) Multichannel absorption compensation with a data-driven structural regularization. Geophysics 85(1):V71–V80. https://doi.org/10.1190/geo2019-0132.1
  • 11. Ma X, Li G, Li H, Li J, Fan X (2020b) Stable absorption compensation with lateral constraint. Acta Geophys 68:1039–1048. https://doi.org/10.1007/s11600-020-00453-w
  • 12. Rosa ALR, Ulrych TJ (1991) Processing via spectral modeling. Geophysics 56(8):1244–1251. https://doi.org/10.1190/1.1443144
  • 13. Sacchi MD (1997) Reweighting strategies in seismic deconvolution. Geophys J Int 129:651–656. https://doi.org/10.1111/j.1365-246X.1997.tb04500.x
  • 14. Sakoe H, Chiba S (1978) Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans Acoust Speech Signal Process 26:43–49. https://doi.org/10.1109/TASSP.1978.1163055
  • 15. Wahba G (1977) Practical approximate solutions to linear operator equations when the data are noisy. SIAM J Numer Anal 14(4):651–667. https://doi.org/10.1137/0714044
  • 16. Wang R, Wang Y (2017) Multichannel algorithms for seismic reflectivity inversion. J Geophys Eng 14(1):41–50. https://doi.org/10.1088/1742-2132/14/1/41
  • 17. Yuan S, Liu J, Zhang R, Tian N (2014) Seismic Deconvolution via total variation regularization. In: 81st Annual international conference and exhibition, EAGE, Expanded Abstracts. https://doi.org/10.3997/2214-4609.20141594
  • 18. Yuan S, Wang S, Tian N, Wang Z (2016) Stable inversion-based multitrace deabsorption method for spatial continuity preservation and weak signal compensation. Geophysics 81(3):V199–V212. https://doi.org/10.1190/geo2015-0247.1
  • 19. Yuan S, Wang S, Luo Y, Wei W, Wang G (2019) Impedance inversion by using the low-frequency full-waveform inversion result as an a priori model. Geophysics 84(2):R149–R164. https://doi.org/10.1190/geo2017-0643.1
  • 20. Zhang B, Yang Y, Pan Y, Wu H, Cao D (2020) Seismic well tie by aligning impedance log with inverted impedance from seismic data. Interpretation 8(4):T917–T925. https://doi.org/10.1190/INT-2019-0289.1
  • 21. Zhang R, Sen MK, Srinivasan S (2013) Multi-trace basis pursuit inversion with spatial regularization. J Geophys Eng 10:035012. https://doi.org/10.1088/1742-2132/10/3/035012
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-968c1db0-020b-427b-b2d2-d63888484593
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.