PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental investigations of heat generation and microstructure evolution during friction stir processing of SnSbCu alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of experimental investigations of the heat generation and microstructure evolution during the friction stir processing (FSP) of the SnSb11Cu6 alloy. The Triflute tool was used for modification; the process was carried out using two rotational speeds of the tool: 280 and 560 RPM and a constant linear speed of 355 mm/min. Microstructure studies were performed employing the techniques of light microscopy and scanning electron microscopy along with analysis of the chemical composition of micro-areas. Additionally, the phase composition was investigated by means of the X-ray diffraction method, and electron backscatter diffraction (EBSD) analysis and hardness testing were performed before and after FSP modification. Furthermore, measurements of the temperature directly on the modified surface by means of a thermal imaging camera and the temperature in the modified zone with a thermocouple system were performed. It was proved that using FSP to modify the SnSbCu alloy promotes refinement and homogenization of the microstructure, as well as improvement of the hardness. The hardness of the starting material was 24 HB, and after FSP, the hardness increased and amounted to, respectively, 25 and 27 HB after processing at 280 and 560 RPM. The microstructure in the stir zone is formed by the dynamic recrystallization (DRX) process and consists of almost equiaxed tin-rich matrix grains with a size of approx. 5–30 µm and fine particles of Cu6Sn5 and SnSb phases. The temperature distribution in the FSP zone is not uniform and changes in a gradient manner.
Rocznik
Strony
art. no. e202, 2022
Opis fizyczny
Bibliogr. 42 poz., rys., wykr.
Twórcy
  • Faculty of Non-Ferrous Metals, AGH University of Science and Technology, 30 Mickiewicza Ave., 30-059 Kraków, Poland
  • LUKASIEWICZ Research Network-Institute of Non-Ferrous Metals, 19 Pilsudskiego Str., 32-050 Skawina, Poland
  • LUKASIEWICZ Research Network-Welding Institute, 16-18 Błogosławionego Czesława Ave., 44-100 Gliwice, Poland
  • Faculty of Non-Ferrous Metals, AGH University of Science and Technology, 30 Mickiewicza Ave., 30-059 Kraków, Poland
autor
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, 30 Mickiewicza Ave., 30-059 Kraków, Poland
Bibliografia
  • [1] Mishra RS, Mahoney MW, McFaden SX, Mara NA, Mukherjee AK. High strain rate superplasticity in a friction stir processed 7075 Al alloy. Scr Mater. 2000. https://doi.org/10.1016/S1359-6462(99)00329-2.
  • [2] Thomas WM. Friction stir butt welding. GB patent 9125978, 6.12.1991, International patent application PCT/GB92/02203.
  • [3] Thomas WM, Nicholas ED, Needham JC, Murch MG, Temple-Smith P, Dawes CJ. Improvements relating to friction welding. Patent European Patent Specification 0 615 480 B1.
  • [4] Givi MK, Asadi P. Advances in friction stir welding and processing. Amsterdam: Woodhead Publishing; 2014.
  • [5] Węglowski MS. Experimental study and response surface methodology for investigation of FSP process. Arch Mech Eng. 2014. https://doi.org/10.2478/meceng-2014-0031.
  • [6] Desai AM, Khatri BC, Patel V, Rana H. Friction stir welding of AZ31 magnesium alloy: a review. Mater Today Proc. 2021. https://doi.org/10.1016/j.matpr.2021.03.082.
  • [7] Alidokht SA, Abdollah-Zadeh A, Soleymani S, Saeid T, Assadi H. Evaluation of microstructure and wear behavior of friction stir processed cast aluminum alloy. Mater Charact. 2012. https://doi.org/10.1016/j.matchar.2011.11.007.
  • [8] Li K, Liu X, Zhao Y. Research status and prospect of friction stir processing technology. Coatings. 2019. https://doi.org/10.3390/coatings9020129.
  • [9] Shercliff HR, Colegrove PA. Modelling of friction stir welding. Math Model Weld Phenom. 2002. https://doi.org/10.17863/CAM.14008.
  • [10] Węglowski MS, Pietras A, Dymek S, Hamilton C. Characterization of friction stir processing applied for modification of surface microstructure in a cast aluminium alloy. In: Proceedings of the 14th International Conference Metalforming. 2012. p 587–590.
  • [11] Hamilton C, Kopyściański M, Senkov O, et al. A coupled thermal/material flow model of friction stir welding applied to Sc-modified aluminum alloys. Metall Mater Trans A. 2013. https://doi.org/10.1007/s11661-012-1512-y.
  • [12] Hamilton C, Węglowski MS, Dymek S. A simulation of friction-stir processing for temperature and material flow. Metall Mater Trans B. 2015. https://doi.org/10.1007/s11663-015-0340-z.
  • [13] Węglowski MS, Sedek P, Hamilton C. Experimental analysis of residual stress in friction stir processed cast AlSi9Mg aluminium alloy. KEM. 2016. https://doi.org/10.4028/www.scientific.net/kem.682.18.
  • [14] Ma Z. Friction stir processing technology: a review. Metall Mater Trans A. 2008. https://doi.org/10.1007/s11661-007-9459-0.
  • [15] Węglowski MS. Friction stir processing—state of the art. Arch Civil Mech Eng. 2018. https://doi.org/10.1016/j.acme.2017.06.002.
  • [16] Heidarzadeh A, Mironov S, Kaibyshev R, Çam G, Simar A, Gerlich A, Khodabakhshi F, Mostafaei A, Field DP, Robson JD, Deschamps A, Withers PJ. Friction stir welding/processing of metals and alloys: a comprehensive review on microstructural evolution. Prog Mater Sci. 2020. https:// doi. org/ 10. 1016/j. pmats ci. 2020.100752.
  • [17] Nakata K, Kim YG, Fujii H, Tsumura T, Komazaki T. Improvement of mechanical properties of aluminum die casting alloy by multi-pass friction stir processing. Mater Sci Eng A. 2006. https://doi.org/10.1016/j.msea.2006.07.150.
  • [18] Sharma SR, Ma ZY, Mishra RS. Effect of friction stir processing on fatigue behavior of A356 alloy. Scr Mater. 2004. https://doi.org/10.1016/j.scriptamat.2004.04.014.
  • [19] Ma ZY, Pilchak AL, Juhas MC, Williams JC. Microstructural refinement and property enhancement of cast light alloys via friction stir processing. Scr Mater. 2008. https://doi.org/10.1016/j.scriptamat.2007.09.062.
  • [20] Reddy GM, Rao KS. Enhancement of wear and corrosion resistance of cast A356 aluminium alloy using friction stir processing. Trans Indian Inst Met. 2010. https:// doi. org/ 10. 1007/s12666-010-0121-y.
  • [21] Sivanesh PM, Elaya PA, Arulvel S. Development of multi-pass processed AA6082/SiCp surface composite using friction stir processing and its mechanical and tribology characterization. Surf Coat Technol. 2020. https://doi.org/10.1016/j.surfcoat.2020.125900.
  • [22] Parikh VK, Badgujar AD, Ghetiya ND. Effect of Friction stir processing parameters on microstructure and microhardness of aluminium based Metal matrix composites. Mater Today Proc. 2022. https://doi.org/10.1016/j.matpr.2022.03.386.
  • [23] Orłowska M, Pixner F, Hütter A, Enzinger N, Olejnik L, Lewandowska M. Manufacturing of coarse and ultrafine-grained aluminum matrix composites reinforced with Al 2 O 3 nanoparticles via friction stir processing. J Manuf Process. 2022. https://doi.org/10.1016/j.jmapro.2022.06.011.
  • [24] Ahmed MMZ, Seleman MME, Eid RG, Zawrah MF. Production of AA1050/silica fume composite by bobbin tool-friction stir processing: microstructure, composition and mechanical properties. CIRP J Manuf Sci Technol. 2022. https://doi.org/10.1016/j.cirpj.2022.07.002.
  • [25] Sadykov FA, Barykin NP, Valeev IS, Danilenko VN. Influence of the structural state on mechanical behavior of tin Babbit. J Mater Eng Perform. 2003. https://doi.org/10.1361/105994903770343448.
  • [26] Leszczyńska-Madej B, Madej M, Hrabia-Wiśnios J. Effect of chemical composition on the microstructure and tribological properties of Sn-based alloys. J Mater Eng Perform. 2019. https://doi.org/10.1007/s11665-019-04154-4.
  • [27] Sotomi I, Tamura K, Goshima T. Effect of amount of antimony on sliding wear resistance of white metal. Tribol Int. 2010. https://doi.org/10.1016/j.triboint.2009.12.047.
  • [28] Zhao J, Sun K, Liang G, Xu C, Zhao J, Xue F, Zhou J. Effect of Zn additions on the microstructure and mechanical properties of Sn-Babbitt alloys fabricated by arc deposition. J Market Res. 2021. https://doi.org/10.1016/j.jmrt.2021.11.097.
  • [29] Barykin NP, Fazlyakhmetov RF, Valeeva AK. Effect of the structure of Babbit B83 on the intensity of wear of tribo couplings. Met Sci Heat Treat. 2006. https:// doi. org/ 10. 1007/s11041-006-0050-x.
  • [30] Potekhin BA, Ilyushin VV, Khristolyubo AS. Effect of casting methods on the structure and properties of tin Babbit. Metal Sci Heat Treat. 2009. https://doi.org/10.1007/s11041-009-9181-1.
  • [31] Gajmal SS, Jijabai V. An investigation on wear behaviour of ASTM B23 tin-based Babbitt alloy developed through microwave-assisted casting. Int J Metalcast. 2022. https://doi.org/10.1007/s40962-021-00721-5.
  • [32] Dong YN, Tong Z, Li X, Wang W. Effect of laser remelting on tribological properties of Babbitt alloy. Mater Res Express. 2019. https://doi.org/10.1088/2053-1591/ab308d.
  • [33] Zhao X, Lai R, Hai X. A study on the microstructures and properties of selective laser melted Babbitt metals. J Mater Eng Perform. 2019. https://doi.org/10.1007/s11665-019-04332-4.
  • [34] Leszczyńska-Madej B, Madej M, Hrabia-Wiśnios J, Węglowska A. Effects of the processing parameters of friction stir processing on the microstructure, hardness and tribological properties of SnSbCu bearing alloy. Materials. 2020. https:// doi. org/ 10.3390/ma13245826.
  • [35] Madej M, Leszczyńska-Madej B, Hrabia-Wiśnios J, Węglowska A. Effect of FSP on tribological properties of grade B89 tin Babbitt. Materials. 2021. https://doi.org/10.3390/ma14102627.
  • [36] Hrabia-Wiśnios J, Leszczyńska-Madej B, Madej M, Węglowska A. Characterization of microstructure and selected properties of SnSbCu alloy after FSP. Int J Adv Manuf Technol. 2021. https://doi.org/10.1007/s00170-021-07781-1.
  • [37] PN-ISO 4381:1997.
  • [38] Leal RM, Galvão I, Loureiro A, et al. Effect of friction stir processing parameters on the microstructural and electrical properties of copper. Int J Adv Manuf Technol. 2015. https://doi.org/10.1007/s00170-015-7141-z.
  • [39] Garcia-Bernal MA, Mishra RS, Verma R, Hernandez-Silva D. Influence of friction stir processing tool design on microstructure and superplastic behavior of Al–Mg alloys. Mater Sci Eng A. 2016. https://doi.org/10.1016/j.msea.2016.05.115.
  • [40] Zainulabdeen AA, Hashim FA, Assi SH. Mechanical properties of Tin-based Babbitt alloy using the direct extrusion technique. ICSET Mater Sci Eng. 2019. https://doi.org/10.1088/1757-899X/518/3/032031.
  • [41] PN-82/H-87111.
  • [42] Predel B. Phase equilibria, crystallographic and thermodynamic data of binary alloys. In: Predel B, editor. Numerical data and functional relationships in science and technology. Berlin: Springer; 2012.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-96879a4b-6285-4b15-b229-13e189f28835
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.