PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Using a GEOBIA framework for integrating different data sources and classification methods in context of land use/land cover mapping

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Land use/land cover (LULC) maps are important datasets in various environmental projects. Our aim was to demonstrate how GEOBIA framework can be used for integrating different data sources and classification methods in context of LULC mapping.We presented multi-stage semi-automated GEOBIA classification workflow created for LULC mapping of Tuszyma Forestry Management area based on multi-source, multi-temporal and multi-resolution input data, such as 4 bands- aerial orthophoto, LiDAR-derived nDSM, Sentinel-2 multispectral satellite images and ancillary vector data. Various classification methods were applied, i.e. rule-based and Random Forest supervised classification. This approach allowed us to focus on classification of each class ‘individually’ by taking advantage from all useful information from various input data, expert knowledge, and advanced machine-learning tools. In the first step, twelve classes were assigned in two-steps rule-based classification approach either vector-based, ortho- and vector-based or orthoand Lidar-based. Then, supervised classification was performed with use of Random Forest algorithm. Three agriculture-related LULC classes with vegetation alternating conditions were assigned based on aerial orthophoto and Sentinel-2 information. For classification of 15 LULC classes we obtained 81.3% overall accuracy and kappa coefficient of 0.78. The visual evaluation and class coverage comparison showed that the generated LULC layer differs from the existing land cover maps especially in relative cover of agriculture-related classes. Generally, the created map can be considered as superior to the existing data in terms of the level of details and correspondence to actual environmental and vegetation conditions that can be observed in RS images.
Rocznik
Strony
99--116
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
autor
  • University of Agriculture in Krakow Faculty of Animal Science 24/28 Mickiewicza Av., 30-059 Kraków
autor
  • University of Agriculture in Krakow Faculty of Forestry 46/29 Listopada Av., 31-425 Kraków
Bibliografia
  • [1] Baatz, M. and Schape, A. (2000). Multiresolution Segmentation: an optimization approach for high quality multi-scale image segmentation. J. Photogramm. Remote Sens., 58, 12–23.
  • [2] Begon, M., Townsend, C.R. and Harper, J.L. (2006). Ecology: From individuals to ecosystems. Malden, MA: Blackwell Pub, p. 499.
  • [3] Belgiu, M. and Csillik, O. (2018). Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sensing of Environment, 204, 509–523; DOI: 10.1016/j.rse.2017.10.005.
  • [4] Bernardini, A., Frontoni, E., Malinverni, E., Mancini, A., Tassetti, A. and Zingaretti, P. (2010). Pixel, object and hybrid classification comparisons. Journal of Spatial Science, 55, 43–54. DOI: 10.1080/ 14498596.2010.487641.
  • [5] Blaschke, T. (2010). Object Based Image Analysis for Remote Sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65 (1), 2–16. DOI: 10.1016/j.isprsjprs.2009.06.004.
  • [6] Blaschke, T., Hay, G.J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Queiroz Feitosa, R., van der Meer, F., van der Werff, H., van Coillie, F. and Tiede, D. (2014). Geographic Object-Based Image Analysis – Towards a New Paradigm. ISPRS Journal of Photogrammetry and Remote Sensing, 87, 180–191. DOI: 10.1016/j.isprsjprs.2013.09.014.
  • [7] Breiman, L., (2001). Random Forests. Mach. Learn., 45, 5–32. DOI: 10.1023/A:1010933404324.
  • [8] Castillejo-González, I.L., López-Granados, F., García-Ferrer, A., Peña-Barragán, J.M., Jurado-Expósito, M., de la Orden, M.S. and González-Audicana, M. (2009). Object- and pixel-based analysis for mapping crops and their agro-environmental associated measures using QuickBird imagery. Comput. Electron. Agric., 68, 207–215.
  • [9] Clevers, J.G.P.W. and Gitelson, A.A. (2013). Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3. International Journal of Applied Earth Observation and Geoinformation, 23, 344–351.
  • [10] Congalton, R.G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37, 35–46.
  • [11] Congalton, R.G. and Green, K. (2009). Assessing the Accuracy of Remotely Sensed Data Principles and Practices, 2nd ed., Mapping Science. CRC Press, Taylor & Francis Group, Boca Raton. DOI: 10.1201/9781420048568.fmatt.
  • [12] de Vienne, D.M. (2016). Lifemap: Exploring the Entire Tree of Life. PLoS Biol., 14 (12), e2001624. https://doi.org/10.1371/journal.pbio.2001624.
  • [13] Garcia, M.G. (2014). Nonequilibrium Statistical Physics in Ecology: Vegetation Patterns, Animal Mobility and Temporal Fluctuations. PhD Thesis. IFISC, Institute for Cross Disciplinary Physics and Complex Systems, Spain.
  • [14] Guisan, A. and Zimmermann, N.E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147–186.
  • [15] Hay, G.J. and Castilla, G. (2006). Object-Based Image Analysis: Strengths, Weaknesses, Opportunities and Threats (SWOT). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 36, 4.
  • [16] Hofmann, P., Blaschke, T. and Strobl, J. (2011). Quantifying the robustness of fuzzy rule sets in object-based image analysis. International Journal of Remote Sensing, 32 (22), 7359–7381. http://dx.doi.org/10.1080/01431161.2010.523727.
  • [17] Huang, R. and Zhu, J. (2013). Using Random Forest to integrate LiDAR data and hyperspectral imagery for landcover classification. In: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Melbourne, Australia, 21–26 July 2013; pp. 3978–3981.
  • [18] Immitzer, M., Vuolo, F. and Atzberger, C. (2016). First Experience With Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sens., 8 (3), 166. DOI: 10.3390/rs8030166.
  • [19] Inglada, J., Arias, M., Tardy, B., Hagolle, O., Valero, S., Morin, D., Dedieu, G., Sepulcre, G., Bontemps, S., Defourny, P. and Koetz, B. (2015). Assessment of an Operational System for Crop Type Map Production Using High Temporal and Spatial Resolution Satellite Optical Imagery. Remote Sens., 7, 12356–12379; DOI: 10.3390/rs70912356.
  • [20] Jia, Y. 2015. Object-based Land Cover Classification with Orthophoto and LIDAR Data. Master of Science Thesis, Royal Institute of Technology (KTH) Stockholm, Sweden.
  • [21] Kaplan, G. and Avdan, U. (2017). Object-based water body extraction model using Sentinel-2 satellite imagery. European Journal of Remote Sensing, 50 (1), 137–143.
  • [22] Kulkarni, A.D. and Lowe, B. (2016). Random Forest Algorithm for Land Cover Classification. International Journal on Recent and Innovation Trends in Computing and Communication, 4 (3), 58–63.
  • [23] Li, M., Ma, L. and Blaschke, T. (2016). A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments. Int. J. Appl. Earth Obs., 49, 87–98. DOI: 10.1016/j.jag.2016.01.01.
  • [24] Liaw, A. and Wiener, M., (2002). Classification and Regression by random Forest. R News, 2, 18–22.
  • [25] Liu, X.H., Skidmore, A.K. and Oosten, H.V. (2002). Integration of classification methods for improvement of land cover map accuracy. ISPRS J. Photogramm. Remote Sens., 56, 257–268.
  • [26] Ma, L., Fu, T., Blaschke, T., Li, M., Tiede, D., Zhou, Z., Ma, X. and Chen, D. (2017). Evaluation Of Feature Selection Methods For Object-based Land Cover Mapping Of Unmanned Aerial Vehicle Imagery Using Random Forest And Support Vector Machine Classifiers. ISPRS International Journal of Geo-information, 6 (2), 51. DOI: 10.3390/ijgi6020051.
  • [27] Ma, L., Li, M., Ma, X., Cheng, L., Du, P. and Liu, Y. (2017). A review of supervised object-based landcover image classification. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 277–293. http://dx.doi.org/10.1016/j.isprsjprs.2017.06.001.
  • [28] Nordkvist, K., Granholm, A.H., Holmgren, J., Olsson H. and Nilsson, M. (2012). Combining optical satellite data and airborne laser scanner data for vegetation classification. Remote Sensing Letters, 3 (5), 393–401. http://dx.doi.org/10.1080/01431161.2011.606240.
  • [29] Oktavia, D. and Prativi, S.D. (2017). Integrated Geological and Ecological Studies of Heath Forest: ecological restoration at the former tin mining land. Conference: IUFRO 2017, At Freiburg, Germany.
  • [30] Ramoelo, A., Cho, M., Mathieu, R. and Skidmore, A.K. (2015). Potential of Sentinel-2 spectral configuration to assess rangeland quality. J. Appl. Remote Sens., 9, 094096. DOI: 10.1117/1.JRS.9.094096.
  • [31] Rodriguez-Galiano, V.F., Ghimire, B., Rogan, J., Chica-Olmo, M. and Rigol-Sanchez, J.P. (2012). An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens., 67, 93–104.
  • [32] Salehi, B., Zhang, Y., and Zhong, M. (2013). A combined object-and pixel-based image analysis framework for urban land cover classification of VHR imagery. Photogrammetric Engineering & Remote Sensing, 79 (11), 999–1014. DOI: 10.14358/PERS.79.11.999.
  • [33] Schuster, C., Förster, M. and Kleinschmit, B. (2012). Testing the red edge channel for improving landuse classifications based on high-resolution multi-spectral satellite data. Int. J. Remote Sens., 33, 5583–5599. DOI: 10.1080/01431161.2012.666812.
  • [34] Smith, G.M. and Morton, R.D. (2010). RealWorld Objects in GEOBIA through the Exploitation of Existing Digital Cartography and Image Segmentation. Photogrammetric Engineering & Remote Sensing, 76(2), 163–171. DOI: 10.14358/PERS.76.2.163.
  • [35] Stephens, P.A., Mason, L.R., Green, R.E., Gregory, R.D., Sauer, J.R., Alison, J., Aunins, A., Brotons, L., Butchart, S.H.M., Campedelli, T., Chodkiewicz, T., Chylarecki, P., Crowe, O., Elts, J., Escandell, V., Foppen, R.P.B., Heldbjerg, H., Herrando, S., Husby, M., Jiguet, F., Lehikoinen, A., Lindström, Å., Noble, D.G., Paquet, J.-Y., Reif, J., Sattler, T., Szép, T., Teufelbauer, N., Trautmann, S., van Strien, A.J., van Turnhout, C.A.M., Vorisek P. and Willis, S.G. (2016). Consistent response of bird populations to climate change on two continents. Science, 352 (6281), 84–87.
  • [36] Stephenson, G. (2010). A comparison of supervised and rule-based objectorientated classification for forest mapping. Postgraduate. Stellenbosch University.
  • [37] Syed, S., Dare, P. and Jones, S. (2005). Automatic classification of land cover features with high resolution imagery and lidar data: an object-oriented approach. Proceedings of SSC2005 Spatial Intelligence, Innovation and Praxis: The national biennial Conference of the Spatial Sciences Institute, September, 2005. Melbourne: Spatial Sciences Institute. ISBN 0-9581366-2-9.
  • [38] Szostak, M., Wężyk, P. and Tompalski, P. (2014). Aerial Orthophoto and Airborne Laser Scanning as Monitoring Tools for Land Cover Dynamics: A Case Study from the Milicz Forest District (Poland). Pure and Applied Geophysics, 171 (6), 857–866, DOI: 10.1007/s00024-013-0668-8.
  • [39] Tiede, D., Lang, S., Albrecht, F. and Hölbling, D. (2010). Object-Based Class Modeling for Cadastre-Constrained Delineation of Geo-Objects. Photogrammetric Engineering & Remote Sensing, 76 (2), 193–202. DOI: 10.14358/PERS.76.2.193.
  • [40] van Dam, A.A., Kipkemboi, J., Rahman, M.M. and Gettel, G.M. (2013). Linking Hydrology, Ecosystem Function, and Livelihood Outcomes in African PapyrusWetlands Using a Bayesian Network Model. Wetlands, 33, 381–397.
  • [41] Varga, O.G., Szabó, S. and Túri, Z. (2014). Efficiency Assessments of GEOBIA in Land Cover Analysis, NE Hungary. Bulletin of Environmental and Scientific Research, 3 (4), 1–9.
  • [42] Wężyk, P., Hawryło, P., Szostak, M., Pierzchalski, P. and de Kok, R. (2016). Using GEOBIA and data fusion approach for land use and land cover mapping. Quaestiones Geographicae, 35 (1), pp. 93–104.
  • [43] Witharana, C. and Civco, D.L. (2014). Optimizing multi-resolution segmentation scale using empirical methods: exploring the sensitivity of the supervised discrepancy measure Euclidean distance 2 (ED2). ISPRS J. Photogramm. Remote Sens., 87, 108–121.
  • [44] Zanariah, Z., Apan, W.N., Le Brocque, A.F. and Maraseni, T.N. (2012). Fine-Scale Habitat Modelling of Wildlife Species Using Spatial Information Tools. In: 2nd Malaysian Postgraduate Conference (MPC 2012), 7–9 July 2012, Gold Coast, Australia.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9686300b-bd84-4a97-9a50-bff5343a840b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.