PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of calcinated halloysite on structure and properties of rigid poly(vinyl chloride) composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Halloysite is a filler which may be used to produce composites with thermoplastic polymer matrix. This work summarized the results of investigations of processing, structural, mechanical, and thermal properties of the composites with poly(vinyl chloride) (PVC) matrix and raw halloysite (HA) as well as its calcined product (KHA). The effectiveness of calcination was confirmed with X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, and nitrogen adsorption method. The PVC composites with HA as well as KHA were processed in the molten state in the Brabender mixer chamber. The reduction of gelation time and simultaneous increase in maximum torque with filler content were found based on the results of plastographometric analysis. SEM images of PVC/halloysite composites showed a homogeneous distribution of the filler in the polymer matrix. The introduction of halloysite leads to a slight increase in Young’s modulus and tensile strength compared to neat PVC, where the increase of both parameters is greater when KHA is used. The incorporation of 1% KHA led to an increase in impact strength, an effect which may be attributed to toughening of the polymer. A slight improvement of the Vicat softening temperature of 2.7 degrees C for PVC/HA and heat deflection temperature of 2.4 C for PVC/KHA was also ascertained for PVC modified with 10 wt% of filler.
Rocznik
Strony
383--–404
Opis fizyczny
Bibliogr. 57 poz., rys., tab.
Twórcy
  • Bydgoszcz University of Science and Technology, Faculty of Chemical Technology and Engineering, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
  • Bydgoszcz University of Science and Technology, Faculty of Chemical Technology and Engineering, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
autor
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Al. A. Mickiewicza 30, 30-059, Kraków, Poland
  • Bydgoszcz University of Science and Technology, Faculty of Agriculture and Biotechnology, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
Bibliografia
  • 1. Abhinayaa R., Jeevitha G., Mangalaraj D., Ponpandian N., Meena P., 2019. Toxic influence of pristine and surfactant modified halloysite nanotubes on phytopathogenic bacteria. Appl. Clay Sci., 174, 57–68. DOI: 10.1016/j.clay.2019.03.022.
  • 2. Akrami-Hasan-Kohal M., Ghorbani M., Mahmoodzadeh F., Nikzad B., 2020. Development of reinforced aldehyde-modified kappa-carrageenan/gelatin film by incorporation of halloysite nanotubes for biomedical applications. Int. J. Biol. Macromol., 160, 669–676. DOI: 10.1016/j.ijbiomac.2020.05.222.
  • 3. Bai Z., Wang L., Liu C., Yang C., Lin G., Liu S., Jia K., Liu X., 2021. Interfacial coordination mediated surface segregation of halloysite nanotubes to construct a high-flux antifouling membrane for oil-water emulsion separation. J. Membr. Sci., 620, 118828. DOI: 10.1016/j.memsci.2020.118828.
  • 4. Boudhani H., Lainé C., Fulchiron R., Cassagnau P., 2007. Rheology and gelation kinetics of PVC plastisols. Rheol. Acta, 46, 825–838. DOI: 10.1007/s00397-006-0157-4.
  • 5. Buruga K., Kalathi J.T., Kim K.H., Ok Y.S., Danil B., 2018. Polystyrene-halloysite nano tube membranes for water purification. J. Ind. Eng. Chem., 61, 169–180. DOI: 10.1016/j.jiec.2017.12.014.
  • 6. Carli L.N., Daitx T.S., Soares G. V., Crespo J.S., Mauler R.S., 2014. The effects of silane coupling agents on the properties of PHBV/halloysite nanocomposites. Appl. Clay Sci., 87, 311–319. DOI: 10.1016/j.clay.2013.11.032.
  • 7. Cavallaro G., Grillo I., Gradzielski M., Lazzara G., 2016. Structure of hybrid materials based on halloysite nanotubes filled with anionic surfactants. J. Phys. Chem. C, 120, 13492–13502. DOI: 10.1021/acs.jpcc.6b01282.
  • 8. Daraie M., Heravi M.M., Rangraz Y., Besharati Z., 2021. Pd NPs supported on halloysite functionalized with Schiff base as an efficient catalyst for Sonogashira reaction. Sci. Rep., 11, 6223. DOI: 10.1038/s41598-021-85821-2.
  • 9. De Silva R.T., Soheilmoghaddam M., Goh K.L., Wahit M.U., Hamid S.B.A., Chai S.-P., Pasbakhsh P., 2016. Influence of the processing methods on the properties of poly(lactic acid)/halloysite nanocomposites. Polym. Compos., 37, 861–869. DOI: 10.1002/pc.23244.
  • 10. Deng L., Yuan P., Liu D., Du P., Zhou J., Wei Y., Song Y., Liu Y., 2019. Effects of calcination and acid treatment on improving benzene adsorption performance of halloysite. Appl. Clay Sci., 181, 105240. DOI: 10.1016/j.clay.2019.105240.
  • 11. Deng S., Zhang J., Ye L., Wu J., 2008. Toughening epoxies with halloysite nanotubes. Polymer, 49, 5119–5127. DOI: 10.1016/j.polymer.2008.09.027.
  • 12. Filice S., Bongiorno C., Libertino S., Compagnini G., Gradon L., Iannazzo D., La Magna A., Scalese S., 2021. Structural characterization and adsorption properties of Dunino raw halloysite mineral for dye removal from water. Materials, 14, 3676. DOI: 10.3390/ma14133676.
  • 13. Frost R.L., Kristof J., 1997. Intercalation of halloysite: A Raman spectroscopic study. Clays Clay Miner., 45, 551–563. DOI: 10.1346/CCMN.1997.0450407.
  • 14. Gaaz T.S., Sulong A.B., Kadhum A.A.H., Al-Amiery A.A., Nassir M.H., Jaaz A.H., 2017. The impact of halloysite on the thermo-mechanical properties of polymer composites. Molecules, 22, 838. DOI: 10.3390/molecules22050838.
  • 15. Ghadiri M., Chrzanowski W., Rohanizadeh R., 2015. Biomedical applications of cationic clay minerals. RSC Adv., 5, 29467–29481. DOI: 10.1039/C4RA16945J.
  • 16. Girois S., 1999. Effect of iron compounds (oxide, salt, or complexes) on poly(vinyl chloride) thermal and photo-chemical stability. J. Vinyl Add. Tech., 5, 218–230. DOI: 10.1002/vnl.10335.
  • 17. Goda E.S., Yoon K.R., El-sayed S.H., Hong S.E., 2018. Halloysite nanotubes as smart flame retardant and economic reinforcing materials: A review. Thermochim. Acta, 669, 173–184. DOI: 10.1016/j.tca.2018.09.017.
  • 18. Jiang Y., Wang P., Zheng J., 2017. Use of ionic monomers to prepare halloysite polymer nanocomposites with reinforced mechanical performance. Appl. Clay Sci., 141, 248–256. DOI: 10.1016/j.clay.2017.03.003.
  • 19. Joussein E., 2016. Geology and mineralogy of nanosized tubular halloysite. Developments in Clay Science, 7, 12–48. DOI: 10.1016/B978-0-08-100293-3.00002-9.
  • 20. Joussein E., Petit S., Churchman J., Theng B., Righi D., Delvaux B., 2005. Halloysite clay minerals — a review. Clay Miner., 40, 383–426. DOI: 10.1180/0009855054040180.
  • 21. Klapiszewski Ł., Pawlak F., Tomaszewska J., Jesionowski T., 2015. Preparation and characterization of novel PVC/silica-lignin composites. Polymers, 7, 1767–1788. DOI: 10.3390/polym7091482.
  • 22. Lazorenko G., Kasprzhitskii A., Yavna V., 2018. Synthesis and structural characterization of betaine- and imidazo-line-based organoclays. Chem. Phys. Lett., 692, 264–270. DOI: 10.1016/j.cplett.2017.12.054.
  • 23. Lee S.Y., Kim S.J., 2002. Adsorption of naphthalene by HDTMA modified kaolinite and halloysite. Appl. Clay Sci., 22, 55–63. DOI: 10.1016/S0169-1317(02)00113-8.
  • 24. Legocka I., Wierzbicka E., Al-Zahari T.M., Osawaru O., 2013. Influence of halloysite on the structure, thermal and mechanical properties of polyamide 6. Polimery, 58, 24–32. DOI: 10.14314/polimery.2013.024.
  • 25. Liu C., Luo Y., Jia Z., Li S., Guo B., Jia D., 2012. Structure and properties of poly(vinyl chloride)/halloysite nanotubes nanocomposites. J. Macromol. Sci. Part B Phys., 51, 968–981. DOI: 10.1080/00222348.2011.564106.
  • 26. Liu C., Luo Y., Jia Z., Li S., Huang D., Jia D., 2014a. Particle configuration and properties of poly(vinyl chloride)/halloysite nanotubes nanocomposites via in situ suspension polymerization. Polym. Compos., 35, 856–863. DOI: 10.1002/pc.22729.
  • 27. Liu C., Luo Y.F., Jia Z.X., Zhong B.C., Li S.Q., Guo B.C., Jia D.M., 2013a. Thermal degradation behaviors of poly(vinyl chloride)/halloysite nanotubes nanocomposites. Int. J. Polym. Mater. Polym. Biomater., 62, 128–132. DOI: 10.1080/00914037.2011.617328.
  • 28. Liu C., Luo Y.F., Jia Z.X., Zhong B.C., Li S.Q., Guo B.C., Jia D.M., 2011. Enhancement of mechanical properties of poly(vinyl chloride) with polymethyl methacrylate-grafted halloysite nanotube. eXPRESS Polym. Lett., 5, 591–603. DOI: 10.3144/expresspolymlett.2011.58.
  • 29. Liu M., Jia Z., Jia D., Zhoua C., 2014b. Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog. Polym. Sci., 39, 1498–1525. DOI: 10.1016/j.progpolymsci.2014.04.004.
  • 30. Liu M., Zhang Y., Zhou C., 2013b. Nanocomposites of halloysite and polylactide. Appl. Clay Sci., 75–76, 52–59. DOI: 10.1016/j.clay.2013.02.019. Luo P., Zhang J.S., Zhang B., Wang J.H., Zhao Y.F., Liu J.D., 2011. Preparation and characterization of silane coupling agent modified halloysite for Cr(VI) removal. Ind. Eng. Chem. Res., 50, 10246–10252. DOI: 10.1021/ie200951n.
  • 31. Lutyński M., Sakiewicz P., Lutyńska S., 2019. Characterization of diatomaceous earth and halloysite resources of Poland. Minerals, 9, 670. DOI: 10.3390/min9110670.
  • 32. Lvov Y.M., Shchukin D.G., Möhwald H., Price R.R., 2008. Halloysite clay nanotubes for controlled release of protective agents. ACS Nano, 2, 814–820. DOI: 10.1021/nn800259q.
  • 33. Mengeloglu F., Matuana L.M., 2003. Mechanical properties of extrusion-foamed rigid PVC/wood- flour composites. J. Vinyl Addit. Technol., 9, 26–31. DOI: 10.1002/vnl.10058.
  • 34. Mirowski J., Oliwa R., Oleksy M., Tomaszewska J., Ryszkowska J., Budzik G., 2021. Poly(vinyl chloride) composites with raspberry pomace filler. Polymers, 13, 1079. DOI: 10.3390/polym13071079.
  • 35. Mondragón M., Roblero-Linares Y.S., Sánchez –Espíndola M.E., Zendejas-Leal B.E., 2009. Rigid poly(vinyl chloride )/ halloysite nanocomposites, In: Laudon M., Romanowicz B. (Eds.), NSTI Nanotech 2009 Proceedings, Vol. 3: Nanotechnology 2009, 482–484.
  • 36. Nakamura R., Netravali A.N., Morgan A.B., Nyden M.R., Gilman J.W., 2012. Effect of halloysite nanotubes on mechanical properties and flammability of soy protein based green composites. Fire Mater., 37, 75–90. DOI: 10.1002/fam.2113.
  • 37. Pajdak A., Skoczylas N., Szymanek A., Lutyński M., Sakiewicz P., 2020. Sorption of CO2 and CH4 on raw and calcined halloysite-structural and pore characterization study. Materials, 13, 917. DOI: 10.3390/ma13040917.
  • 38. Pasbakhsh P., Churchman G.J., Keeling J.L., 2013. Characterisation of properties of various halloysites relevant to their use as nanotubes and microfibre fillers. Appl. Clay Sci., 74, 47–57. DOI: 10.1016/j.clay.2012.06.014.
  • 39. Pasbakhsh P., Ismail H., Ahmad Fauzi M.N., Bakar A.A., 2010a. EPDM/modified halloysite nanocomposites. Appl. Clay Sci., 48, 405–413. DOI: 10.1016/j.clay.2010.01.015.
  • 40. Pasbakhsh P., Ismail H., M.N., Ahmad Fauzi M.N., Bakar A.A., 2010b. Halloysite nanotubes as a novel nanofiller for polymer nanocomposites. Extended Abstracts – 21st Australian Clay Minerals Conference – Brisbane, August 2010. 93–96.
  • 41. Shubbar S.D.A., 2011. The effect of shear on the properties of rigid PVC. J. Eng., 17, 1567–1575.
  • 42. Sikora J.W., Gajdoš I., Puszka A., 2019. Polyethylene-matrix composites with halloysite nanotubes with enhanced physical/thermal properties. Polymers, 11, 787. DOI: 10.3390/polym11050787.
  • 43. Stoch L., Dyjor S., Kalmus S., Sikora W., 1977. Zwietrzeliny bazaltowe Dolnego Śląska. Prace Mineralogiczne, 56. Zakład Narodowy im. Ossolińskich, Wrocław.
  • 44. Sun P., Liu G., Lv D., Dong X., Wu J., Wang D., 2015. Effective activation of halloysite nanotubes by piranha solution for amine modification via silane coupling chemistry. RSC Adv., 5, 52916–52925. DOI: 10.1039/c5ra04444h.
  • 45. Tan D., Yuan P., Liu D., Du P., 2016. Surface modifications of halloysite. Developments in Clay Science, 7, 167–201.DOI: 10.1016/B978-0-08-100293-3.00008-X.
  • 46. Tironi A., Cravero F., Scian A.N., Irassar E.F., 2017. Pozzolanic activity of calcined halloysite-rich kaolinitic clays. Appl. Clay Sci., 147, 11–18. DOI: 10.1016/j.clay.2017.07.018.
  • 47. Tomaszewska J., Klapiszewski Ł., Skórczewska K., Szalaty T.J., Jesionowski T., 2017. Advanced organic-inorganic hybrid fillers as functional additives for poly(vinyl chloride). Polimery, 62, 19–26. DOI: 10.14314/polimery.2017.019.
  • 48. Tomaszewska J., Sterzyński T., Piszczek K., 2007. Rigid poly(vinyl chloride) gelation in a brabender measuring mixer. III. Transformation in the torque maximum. J. Appl. Polym. Sci., 106, 3158–3164. DOI: 10.1002/app.26754.
  • 49. Yin B., Hakkarainen M., 2011. Core-shell nanoparticle-plasticizers for design of high performance polymeric materials with improved stiffness and toughness. J. Mater. Chem., 21, 8670–8677. DOI: 10.1039/c1jm10624d.
  • 50. Yuan P., Southon P.D., Liu Z., Green M.E.R., Hook J.M., Antill S.J., Kepert C.J., 2008. Functionalization of halloysite clay nanotubes by grafting with 𝛾-aminopropyltriethoxysilane. J. Phys. Chem. C, 112, 15742–15751. DOI: 10.1021/jp805657t.
  • 51. Yuan P., Tan D., Annabi-Bergaya F., Yan W., Fan M., Liu D., He H., 2012. Changes in structure, morphology, porosity, and surface activity of mesoporous halloysite nanotubes under heating. Clays Clay Miner., 60, 561–573. DOI: 10.1346/CCMN.2012.0600602.
  • 52. Zahidah K.A., Kakooei S., Ismail M.C., Raja P.B., 2017. Halloysite nanotubes as nanocontainer for smart coating application: A review. Prog. Org. Coat., 111, 175–185. DOI: 10.1016/j.porgcoat.2017.05.018.
  • 53. Zhang A., Zhang Y., Zhu Z., 2019. Thermal properties of Halloysite nanotubes (HNTs) intercalation complexes – A review. E3S Web Conf., 131, 01055. DOI: 10.1051/e3sconf/201913101055.
  • 54. Zhang A.B., Pan L., Zhang H.Y., Liu S.T., Ye Y., Xia M.S., Chen X.G., 2012. Effects of acid treatment on the physico-chemical and pore characteristics of halloysite. Colloids Surf., A, 396, 182–188. DOI: 10.1016/j.colsurfa. 2011.12.067.
  • 55. Zhang B., Guo H., Yuan P., Li Y., Wang Q., Deng L., Liu D., 2020a. Geopolymerization of halloysite via alkaliactivation: Dependence of microstructures on precalcination. Appl. Clay Sci., 185, 105375. DOI: 10.1016/j.clay.2019.105375.
  • 56. Zhang Y., Li Y., Zhang Y., 2020b. Preparation and intercalation structure model of halloysite-stearic acid intercalation compound. Appl. Clay Sci., 187, 105451. DOI: 10.1016/j.clay.2020.105451.
  • 57. Zhao L., Zhang Y., Miao Y., Nie L., 2016. Controlled synthesis, characterization and application of hydrophobic calcium carbonate nanoparticles in PVC. Powder Technol., 288, 184–190. DOI: 10.1016/j.powtec.2015.11.001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-96840070-f853-40f0-947d-3a674be7d67d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.