PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonlinear vibrations of periodic beams

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Geometrically nonlinear vibrations of beams with properties periodically varying along the axis are investigated. The tolerance method of averaging differential operators with highly oscillating coefficients is applied to obtain governing equations with constant coefficients. The proposed model describes dynamics of the beam with the effect of microstructure size. In an example, an analysis of undamped forced nonlinear vibrations of the periodic beam is shown. Moreover, the results obtained for undamped free vibrations of periodic beams by the tolerance model are justified by those results from the finite element method. These results can be used as a benchmark in similar problems.
Rocznik
Strony
1095--1108
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Lodz University of Technology, Department of Structural Mechanics, Łódź, Poland
  • Lodz University of Technology, Department of Structural Mechanics, Łódź, Poland
Bibliografia
  • 1. Awrejcewicz J., Krysko A.V., Mrozowski J., Saltykova O.A., Zhigalov M.V., 2011, Analysis of regular and chaotic dynamics of the Euler-Bernoulli beams using finite difference and finite element methods, Acta Mechanica Sinica, 27, 36-43
  • 2. Bakhvalov N.S., Panasenko G.P., 1984, Averaging of Processes in Periodic Media (in Russian), Nauka, Moskwa
  • 3. Banakh L., Kempner M., 2010, Vibrations of mechanical systems with regular structure, [In:] Foundations of Engineering Mechanics, Springer, Berlin
  • 4. Baron E., 2006, On modelling of periodic plates having the inhomogeneity period of an order of the plate thickness, Journal of Theoretical and Applied Mechanics, 44, 3-18
  • 5. Bensoussan A., Lions J.L., Papanicolaou G., 1978, Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam
  • 6. Chen T., 2013, Investigations on flexural wave propagation of a periodic beam using multireflection method, Archive of Applied Mechanics, 83, 315-329
  • 7. Chen T., Wang L., 2013, Suppression of bending waves in a periodic beam with Timoshenko beam theory, Acta Mechanica Solida Sinica, 26, 177-188
  • 8. He W.M., Chen W.Q., Qiao H., 2013, Frequency estimate and adjustment of composite beams with small periodicity, Composites: Part B, 45, 742-747
  • 9. Hryniewicz Z., Kozioł P., 2013, Wavelet-based solution for vibrations of a beam on a nonlinear viscoelastic foundation due to moving load, Journal of Theoretical and Applied Mechanics, 51, 215-224
  • 10. Jędrysiak J., 1999, Dynamics of thin periodic plates resting on a periodically inhomogeneous Winkler foundation, Archive of Applied Mechanics, 69, 345-356
  • 11. Jędrysiak J., 2013, Modelling of dynamic behaviour of microstructured thin functionally graded plates, Thin Walled Structures, 71, 102-107
  • 12. Jędrysiak J., Woźniak C., 2006, On the propagation of elastic waves in a multiperiodically reinforced medium, Meccanica, 41, 553-569
  • 13. Jikov V.V., Kozlov S.M., Oleinik O.A., 1994, Homogenization of Differential Operators and Integral Functionals, Springer Verlag, Berlin-Heidelberg-New York
  • 14. Kolpakov A.G., 1991, Calculation of the characteristics of thin elastic rods with a periodic structure, Journal of Applied Mathematics and Mechanics, 55, 358-365
  • 15. Kolpakov A.G., 1995, The asymptotic theory of thermoelastic beams, Journal of Applied Mechanics and Technical Physics, 36, 756-763
  • 16. Kolpakov A.G., 1998, Application of homogenization method to justification of 1-D model for beam of periodic structure having initial stresses, International Journal of Solids and Structures, 35, 2847-2859
  • 17. Kolpakov A.G., 1999, The governing equations of a thin elastic stressed beam with a periodic structure, Journal of Applied Mathematics and Mechanics, 63, 495-504
  • 18. Krysko A.V., Zhigalov M.V., Saltykova O.A., 2008, Control of complex nonlinear vibrations of sandwich beams, Russian Aeronautics, 51, 238-243
  • 19. Lewiński T., Telega J.J., 2000, Plates, laminates and shells, World Scientific Publishing Company, Singapore
  • 20. Magnucki K., Jasion P., Krus M., Kuligowski P., Wittenbeck L., 2013, Strength and buckling of sandwich beams with corrugated core, Journal of Theoretical and Applied Mechanics, 51, 15-24
  • 21. Mazur-Śniady K., 1993, Macro-dynamics of micro-periodic elastic beams, Journal of Theoretical and Applied Mechanics, 31, 781-793
  • 22. Mazur-Śniady K., Śniady P., 2001, Dynamic response of a micro-periodic beam under moving load – deterministic and stochastic approach, Journal of Theoretical and Applied Mechanics, 39, 323-338
  • 23. Mazur-Śniady K., Woźniak C., Wierzbicki E., 2004, On the modelling of dynamicproblems for plates with a periodic structure, Archive of Applied Mechanics, 74, 179-190
  • 24. Olhoff N., Niu B., Cheng G., 2012, Optimum design of band-gap beam structures, International Journal of Solids and Structures, 49, 3158-3169
  • 25. Sanchez-Palencia E., 1980, Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics 127, Springer-Verlag, Berlin
  • 26. Sedighi H.M., Reza A., Zare J., 2013, The effect of quintic nonlinearity on the investigation of transversely vibrating buckled Euler-Bernoulli beams, Journal of Theoretical and Applied Mechanics, 51, 959-968
  • 27. Syerko E., Diskovsky A.A., Andrianov I.V., Comas-Cardona S., Binetruy C., 2013, Corrugated beams mechanical behavior modelling by the homogenization method, International Journal of Solids and Structures, 50, 928-936
  • 28. Sylvia J.E., Hull A.J., 2013, A dynamic model of a reinforced thin plate with ribs of finite width, International Journal of Acoustics and Vibration, 18, 86-90
  • 29. Tomczyk B., 2007, A non-asymptotic model for the stability analysis of thin biperiodic cylindrical shells, Thin Walled Structures, 45, 941-944
  • 30. Wang Y.Z., Li F.M., 2014, Nonlinear primary resonance of nano beam with axial initial load by nonlocal continuum theory, International Journal of Non-Linear Mechanics, 61, 74-79
  • 31. Wirowski A., 2012, Self-vibration of thin plate with non-linear functionally graded material, Archives of Mechanics, 64, 603-615
  • 32. Woźniak C. et al. (Eds.), 2010, Mathematical Modelling and Analysis in Continuum Mechanics of Microstructured Media, Silesian University of Technology Press, Gliwice, Poland
  • 33. Woźniak C., Michalak B., Jędrysiak J. (Eds.), 2008, Thermomechanics of Microheterogeneous Solids and Structures. Tolerance Averaging Approach, Lodz Technical University Press, Łódź, Poland
  • 34. Woźniak C., Wierzbicki E., 2000, Averaging Techniques in Thermomechanics of Composite Solids, Czestochowa University of Technology Press, Częstochowa, Poland
  • 35. Yu D., Wena J., Shen H., Xiao Y., Wen X., 2012, Propagation of flexural wave in periodic beam on elastic foundations, Physics Letters A, 376, 626-630
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniajacą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9680f9db-cde9-4722-b2bf-b1a354005d88
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.