Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
New materials and processes in conversion and storage of energy - selected problems
Języki publikacji
Abstrakty
Na podstawie studiów literaturowych wybrano i przytoczono przykłady obecnie stosowanych technologii i materiałów do konwersji oraz przechowywania energii. Mając na uwadze z jednej strony rosnące zapotrzebowanie na energię, z drugiej zaś bogactwa naturalne oraz warunki klimatyczne, wybrano kilka zagadnień, dla których w zarysie przedstawiono obecny stan badań oraz podano literaturę. Studia literaturowe przeprowadzono, opierając się na bazach danych SciFinder i Current Contents, w perspektywie ostatnich czterech lat. Tylko w wyjątkowych przypadkach sięgano do starszej literatury.
On the basis of literature studies the examples of currently used technologies and materials for energy conversion and storage were selected and described. Taking into consideration increasing domestic demand for energy, limited resources and climate conditions, authors have presented several energy conversion and storage related topics. Literature studies were carried out on the basis of databases SciFinder and Current Contents in perspective past four years. Only in exceptional cases dating back to the older literature.
Rocznik
Strony
187--196
Opis fizyczny
Bibliogr. 65 poz.
Twórcy
autor
- Politechnika Wrocławska, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław
autor
- Politechnika Wrocławska
Bibliografia
- [1] Arakawa H. et al.: Catalysis research of relevance to carbon management: Progress, Challenges, and Opportunities, Chem. Rev., 101 (2000), 953-996.
- [2] Bao J., Zhao L.: A review of working fluid and expander selections for organic Rankine cycle, Renew. Sustain. Energy Rev., 24 (2013), 325-342.
- [3] Bazaga-Garcia M., Colodrero R.M.P., Papadaki M., Garczarek P., Zoń J., Olivera-Pastor P., Losilla E.R., León-Reina L., Aranda M.A.G., Choquesillo-Lazarte D., Demadis K.D., Cabeza A.: Guest molecule-responsive functional calcium phosphonate frameworks for tuned proton conductivity, J. Am. Chem. Soc., 136 (2014), 5731-5739.
- [4] Bhavsar S., Najera M., Solunke R., Veser G.: Chemical looping: To combustion and beyond, Catalysis Today, 228 (2014), 96-105.
- [5] Bielowicz B.: A new technological classification of low-rank coal on the basis of Polish deposits, Fuel, 96 (2012), 497-510.
- [6] Bukur D.B., Elbashir N.: Gas conversion: The clean energy of the future is the theme of NGCS-10 in Doha, Qatar, Ind. Eng. Chem. Res., 53 (2014), 1719-1719.
- [7] Ceraolo M., Lutzemberger G.: Stationary and on-board storage systems to enhance energy and cost efficiency of tramways, J. Power Sources, 264 (2014), 128-139.
- [8] Chen H., Goswami D.Y., Stefanakos E.K.: A review of thermodynamic cycles and working fluids for the conversion of low-grade heat, Renew. Sustain. Energy Rev., 14 (2010), 3059-3067.
- [9] Chen X., Shen S., Guo L., Mao S.S.: Semiconductor-based photocatalytic hydrogen generation, Chem. Rev., 110 (2010), 6503-6570.
- [10] Czakiert T., Sztekler K., Karski S., Markiewicz D., Nowak W.: Oxy-fuel circulating fluidized bed combustion in a small pilot-scale test rig, Fuel Proc. Technol., 91 (2010), 1617-1623.
- [11] Czakiert T., Muskala W., Janowska S., Krawczyk G., Borecki P., Jesionowski Ł., Nowak W.: Combustible matter conversion in an oxy-fuel circulating fluidized-bed (CFB) environment, Energy Fuels, 26 (2012), 5437-5445.
- [12] Dutta K., Daverey A., Lin J.G.: Evolution retrospective for alternative fuels: First to fourth generation, Renew. Energy, 69 (2014), 114-122.
- [13] Dutta S.: A review on production, storage of hydrogen ann its utilization as an energy resource, J. Ind. Eng. Chem., 20 (2014), 1148-1156.
- [14] Elbashir N.O., Mirodatos C., Holmen A., Bukur D.B.: Preface. Natural gas conversion: Current status and potentials in the light of the NGCS-10, Catalysis Today, 228 (2014), 1-4.
- [15] Escudero-González J., López-Jiménez P.M.: Iron redox battery as electrical energy storage system in the Spanish energetic framework, Electrical Power Energy Systems, 61 (2014), 421-428.
- [16] Fan L.S.: Chemical Looping Systems for Fossil Energy Conversion, Wiley, New York 2010.
- [17] Fernández A., Dieste J.A.: Low and medium temperature solar thermal collector based in innovative materials and improved heat exchange performance, Energy Conversion Management, 75 (2013), 118-129.
- [18] Fujitsuka H., Ashida R., Kawase M., Miura K.: Examination of low-temperature oxidation of low-rank coals, aiming at understanding their self-ignition tendency, Energy Fuels, 28 (2014), 2402-2407.
- [19] Gnutek Z., Kolasiński P.: The application of rotary vane expanders in organic rankine cycle systems – thermodynamic description and experimental results, J. Eng. Gas Turbine Power-Trans. ASME, 135 (2013), 61-69.
- [20] Hadjipaschalis I., Poullikkas A., Efthimiou V.: Overview of current and future energy storage technologies for electric power applications, Renew. Sustain. Energy Rev., 13 (2009), 1513-1522.
- [21] Hairuddin A.A., Yusaf T., Wandel A.P.: Experimental investigation of intake diesel aerosol fuel homogeneous charge compression ignition (HCCI) engine combustion and emissions, Renew. Sustain. Energy Rev., 32 (2014), 739-761.
- [22] Han Z., Eisenberg R.: Fuel from water: The photochemical generation of hydrogen from water, Acc. Chem. Res., 2014, http://dx.doi.org/10.10221/ar5001605.
- [23] Ikealumba W.C., Wu H.: Some recent advances in liquefied natural gas (LNG) production, spill, dispersion, and safety, Energy Fuels, 28 (2014), 3556-3586.
- [24] Imran S., Emberson D.R., Diez A., Wen D.S., Crookes R.J., Korakianitis T.: Natural gas fueled compression ignition engine performance and emissions maps with diesel and RME pilot fuels, Applied Energy, 124 (2014), 354-365.
- [25] Ismail A.A., Bahnemann D.W.: Photochemical splitting of water foe hydrogen production by photocatalysis: A review, Solar Energy Mat. Solar Cells, 128 (2014), 85-101.
- [26] Iulianelli A., Ribeirinha P., Mendes A., Basile A.: Methanol steam reforming for hydrogen generation via conventional and membrane reactors: A review, Renew. Sustain. Energy Rev., 29 (2014), 355-368.
- [27] Joya K.S., Joya Y.F., Ocakoglu K., van de Krol R.: Water-splitting catalysis and solar fuel devices: Artificial leaves on the move, Angew. Chem. Int. Ed., 52 (2013), 10426-10437.
- [28] Kalicka Z., Jerzak W., Kawecka-Cebula E.: The effect of combustion of natural gas with 21-29%O2/CO2?N2 mixtures on emission of carbon monoxide, Arch. Environ. Protection, 39 (2013), 93-103.
- [29] Lee S.W., Yang Y., Lee H.W., Ghasemi H., Kraemer D., Chen G., Cui Y.: An electrochemical system for efficiently harvesting low-grade heat energy, Nature Comm., 2014.
- [30] Li C.Z.: Importance of volatile-char interactions during the pyrolysis and gasification of low-rank fuels – A review, Fuel, 112 (2013), 609-623.
- [31] Li L., Wu Z., Yuan S., Zhang X.B.: Advances and challenges for flexible energy storage and conversion devices and systems, Energy Environ. Sci., 7 (2014), 2101-2122.
- [32] Li T.X., Wang R.Z., Yan T., Ishugah T.F.: Integrated energy storage and energy upgrade, combined cooling and heating supply, and waste heat recovery with solid-gas thermochemical sorption heat transformer, Int. J. Heat Mass Transfer, 76 (2014), 237-246.
- [33] Low F., De Girolamo A., Dai B.Q., Zhang L.: Emission of organically bound elements during the pyrolysis and char oxidation of lignites in air and oxyfuel combustion mode, Energy Fuels, 28 (2014), 4167-4176.
- [34] Luyben W.L.: Chemical process engineering principles of combustion turbines, Energy Fuels, 27 (2013), 6316-6321.
- [35] Mahlia T.M.I., Saktisahdan T.J., Jannifar A., Hasan M.H., Matseelar H.S.C.: A review of available methods and development on energy storage; technology update, Renew. Sustain. Energy Rev., 33 (2014), 532-545.
- [36] Manil P., Baudouy B., Clément S., Devaux M., Durante M., Fazilleau P., Ferracin P., Fessia P., Garcia Munoz J.E., Garcia L., Gauthier R., Oberli L., Perez J.C., Pietrowicz S., Rifflet L.M., de Rijk G., Rondeaux F., Todesco E.: Development and coil fabrication test of the Nb3Sn dipole magnet FRESCA2, IEEE Trans. Appl. Superconduc., 24 (2014), 4001705.
- [37] Mendiara T., de Diego L.F., Garcia-Labiano F., Gayán P., Adánez A.A.J.: On the use of a highly reactive iron ore in Chemical Looping Combustion of different coals, Fuel, 126 (2014), 239-249.
- [38] Mendiara T., Izquierdo M.T., Abad A., Gayán P., Garcia-Labiano F., de Diego L.F., Adánez J.: Mercury release and speciation in chemical looping combustion of coal, Energy Fuel, 28 (2014), 2786-2794.
- [39] Müller K., Städter M., Rachow F., Hoffmannbeck D., Scmeiβer D.: Sabatier-based CO2-methanation by catalytic conversion, Environ, Earth Sci., 70 (2013), 3771-3778.
- [40] Nithyanandam K., Pitchumani R.: Design of a latent thermal energy storage system with embedded heat pipes, Appl. Energy, 126 (2014), 266-280.
- [41] Nozik A.J., Miller J.: Introduction to solar photon conversion, Chem. Rev., 110 (2010), 6443-6445.
- [42] Okasha F., Zaater G., El-Emam S., Awad M., Zeidan E.: Co-combustion of biomass and gaseounfiguration of fluidized bed: Combustion characteristic, Fuel, 133 (2014), 143-152.
- [43] Osman H., Jangam S.V., Lease J.D., Mujumdar A.S.: Drying of low-rank coal (LRC) – A review of recent patents and innovations, Drying Techn., 29 (2011), 1763-1783.
- [44] Pardo P., Deydier A., Anxionnaz-Minvielle Z., Rougé S., Cabassud M., Cognet P.: A review on high temperature thermochemical heat energy storage, Renew. Sustain. Energy Rev., 32 (2014), 591-610.
- [45] Perera M.S.A., Ranjith P.G., Choi S.K., Bouazza A., Kodikara J., Airey D.: A review of coal properties pertinent to carbon dioxide sequestration in coal seams: with special reference to Victorian brown coals, Environ. Earth Sci, 64 (2011), 223-235.
- [46] Pielichowska K., Pielichowski K.: Phase change materials for thermal energy storage, Progress Mat. Sci., 65 (2014), 67-123.
- [47] Pietrowicz S., Baudouy B.: Numerical study of the thermal behavior of an Nb3Sn high field magnet in He II, Cryogenics, 53 (2013), 72-77.
- [48] Quoilin S., Van Den Broek M., Declaye S., Dewallef P., Lemort V.: Techno-economic survey of organic rankine cycle (ORC) systems, Renew. Sustain. Energy Rev., 22 (2013), 168-186.
- [49] Rady A.C., Giddey S., Kulkarni A., Badwall S.P.S., Bhattacharya S., Ladewig B.P.: Direct carbon fuel cell operation on brown coal, Applied Energy, 120 (2014), 56-64.
- [50] Saidur R., Rezaei M., Muzammil W.K., Hassan M.H., Paria S., Hasanuzzaman M.: Technologies to recover exhaust heat from internal combustion engines, Renew. Sustain. Energy Rev., 16 (2012), 5649-5659.
- [51] Saucedo M.A., Lim J.Y., Dennis J.S., Scott S.A.: CO2-gasification of lignite coal in the presence of an iron – based oxygen carrier for chemical-looping combustion, Fuel, 127 (2014), 186-201.
- [52] Sevill M., Mokaya R.: Energy storage applications of activated carbons: supecapacitor and hydrogen storage, Energy Environ. Sci., 7 (2014), 1250-1280.
- [53] Tchanche B.F., Lambrinos G., Frangoudakis A., Papadakis G.: Low-grade heat conversion into power using organic rankine cycles – A review of various applications, Renew. Sustain. Energy Rev., 15 (2011), 3963-3979.
- [54] Tian Y., Zhao C.Y.: A review of solar collectors and thermal energy storage in solar thermal applications, Appl. Energy, 104 (2013), 538-553.
- [55] Uddin Md. N., Wan Daud W.M.A.: Technological diversity and economics: Coupling effects on hydrogen production from biomass, Energy Fuels, 28 (2014), 4300-4320.
- [56] Vohra M., Manwar J., Manmode R., Padgilwar S., Patil S.: Bioethanol production: Feedstock and current technologies, J. Environ. Chem. Eng., 2 (2014), 573-584.
- [57] Xu J., Wang R.Z., Li Y.: A review of available technologies for seasonal thermal energy storage, Solar Energy, 103 (2014), 610-638.
- [58] Yaakob Z., Narayanan B.N., Padikkaparambil S., Surya U.K., Mohammed A.P.: A review on the oxidation stability of biodiesel, Renew. Sustain. Energy Rev., 35 (2014), 136-153.
- [59] Yaliwal V.S., Banapurmath N.R., Gireesh N.M., Tewari P.G.: Production and utilization of renewable and sustainable gaseous fuel for power generation applications: A review of literature, Renew. Sustain. Energy Rev., 34 (2014), 608-627.
- [60] Yan Y., Yang S., Blake A.J., Schröder M.: Studies on metal-organic frameworks of Cu(II) with isophthalate linkers for hydrogen storage, Acc. Chem Res., 47 (2014), 296-307.
- [61] Yu J., Tahmasebi A., Han Y., Yin F., Li X.: A review on water in low rank coals: The existence, interaction with coal structure and effects on coal utilization, Fuel Processing Technol., 106 (2013), 9-20.
- [62] Zhang J., Li J., Li Y., Zhao Y.: Hydrogen Generation, Storage and Utilization, Wiley, New York 2014.
- [63] Zhang J., Wang Y., Dong L., Gao S., Xu G.: Decoupling gasification: approach principle and technology justification, Energy Fuels, 24 (2010), 6223-6232.
- [64] Zhang J., Wu R., Zhang G., Yu J., Yao C., Wang Y., Gao S., Xu G.: Technical review on thermochemical conversion based on decoupling for solid carbonaceous fuels, Energy Fuels 27 (2014), 1951-1966.
- [65] Zhong S., Baitalow F., Nikityuk P., Gutte H., Meyer B.: The effect of particle size on the strength parameters of German brown coal and its chars, Fuel, 125 (2014), 200-205.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-967efbe5-7022-483d-87e4-f8eb77025055