Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Precipitation is a component of the hydrological cycle, knowing its spatial distribution is vital for the management of hydrographic basins, the territory and the development of fundamental activities for society. That is why the present study shows the spatial variability of rainfall in Cartagena de Indias city with a network of rain gauges, made up of nine pieces of equipment, separated from each other by 0.9-27 km. After a year of recording (2019), using historical series of data, it was found that the maximum rainfall occurs in the trimester between September and November, with interpolated maps made by the Ordinary Kriging (OK) method it was found that the maximum rainfall is focused on the north, centre and west of the territory, instead, the maximum intensities are presented in the centre and west, the minimums for both variables are presented to the east and south. The 70 and 90% of the rain events have a duration of less than 30 min and 1 h, respectively. Three-parameter exponential function was fitted to the paired correlation distances, and presented correlations lower than 0.8, 0.5 and 0.2 from distances of 1, 3 and 7 km, respectively, in 30 min rain integration. It was also found that with a pluviometric network conformed by at least six pieces of equipment and separated by a 5 km distance from each other in the urban area, a correlation of 0.5 and compliance with the WMO recommendations would be obtained.
Wydawca
Czasopismo
Rocznik
Tom
Strony
138--149
Opis fizyczny
Bibliogr. 43 poz., mapy, rys., tab., wykr.
Twórcy
autor
- Universidad de Cartagena, Faculty of Engineering, Department of Civil Engineering, Consulate Ave 30, No. 48-152, 130014, Cartagena de Indias, Colombia
autor
- Universidad de Cartagena, Faculty of Engineering, Department of Civil Engineering, Consulate Ave 30, No. 48-152, 130014, Cartagena de Indias, Colombia
autor
- Universidad de Cartagena, Faculty of Engineering, Department of Civil Engineering, Consulate Ave 30, No. 48-152, 130014, Cartagena de Indias, Colombia
autor
- Universidad de Cartagena, Faculty of Engineering, Department of Civil Engineering, Consulate Ave 30, No. 48-152, 130014, Cartagena de Indias, Colombia
- Universidad de Cartagena, Faculty of Engineering, Department of Civil Engineering, Consulate Ave 30, No. 48-152, 130014, Cartagena de Indias, Colombia
autor
- Universidad de Cartagena, Faculty of Engineering, Department of Civil Engineering, Consulate Ave 30, No. 48-152, 130014, Cartagena de Indias, Colombia
Bibliografia
- ADHIKARY S.K., YILMAZ A.G., MUTTIL N. 2015. Optimal design of rain gauge network in the Middle Yarra River catchment, Australia. Hydrological Processes. Vol. 29(11) p. 2582–2599. DOI 10.1002/hyp.10389.
- Alcaldia Mayor de Cartagena de Indias 2001. Plan de Ordenamiento Territorial del Distrito Turístico y Cultural de Cartagena de Indias [Territorial Planning Plan of the Tourist and Cultural District of Cartagena de Indias]. [online]. Cartagena de Indias. [Access 30.05.2019]. Available at: https://vuc.cartagena.gov.co/documentos/normatividad/DECRETO_0977_de_2001.pdf
- ALFONSO A., SCHNABEL S. 2017. Variación espacial de las precipitaciones en una pequeña cuenca hidrográfica del suroeste de España [Spatial variation of rainfall in a small hydrographic basin in southwestern Spain]. Geographicalia. Vol. 69 p. 65–91. DOI 10.26754/ojs_geoph/geoph.2017692319.
- CIOH 2011. Climatología de los principales puertos del Caribe colombiano: Cartagena de Indias [Climatology of the main ports of the Colombian Caribbean: Cartagena de Indias]. [online]. D.T. y C. Cartagena de Indias. Centro de Investigaciones Oceanográficas e Hidrográficas. [Access 26.03.2019]. Available at: https://www.cioh.org.co/meteorologia/ResumenCartagena.php
- CORTÉS A.C. 2010. Análisisde la variabilidad espacial y temporal de la precipitación en una ciudad de media montaña Andina caso de estudio: Manizales [Analysis of the spatial and temporal variability of precipitation in an Andean mid-mountain city case study: Manizales] [online]. Universidad Nacional de Colombia Sede Manizales. [Access 17.04.2019]. Available at: https://repositorio.unal.edu.co/handle/unal/7246
- DE VOS L., LEIJNSE H., OVEREEM A., UIJLENHOET R. 2017. The potential of urban rainfall monitoring with crowdsourced automatic weather stations in Amsterdam. Hydrology and Earth System Sciences. Vol. 21(2) p. 765–777. DOI 10.5194/hess-21-765-2017.
- DEY P., MUJUMDAR P.P. 2019. On the uniformity of rainfall distribution over India. Journal of Hydrology. Vol. 578, 124017. DOI 10.1016/j.jhydrol.2019.124017.
- EPA Cartagena. 2019. Ordenamiento Territorial [Territorial Ordering]. [online]. Establecimiento Público Ambiental Cartagena. [Access 05.04.2020]. Available at: http://observatorio.epacartagena.gov.co/gestion-ambiental/generalidades-de-cartagena/territorio/orde-namiento-territorial/
- GARCÍA F., CRUZ I. 2009. Variabilidad de la precipitación pluvial en la región Pacífico Norte de México [Variability of rainfall in the north pacific region of México]. Agrociencia. Vol. 43(1) p. 1–9.
- GARRIDO-ARÉVALO A.R., AGUDELO-OTÁLORA L.M., OBREGÓN-NEIRA N., GARRIDO-ARÉVALO V., QUIÑONES-BOLAÑOS E.E., NARAEI P., MEHR-VAR M., BUSTILLO-LECOMPTE C.F. 2020. Application of artificial neural network and information entropy theory to assess rainfall station distribution: A case study from Colombia. Water. Vol. 12 (7) p. 1–18. DOI 10.3390/w12071973.
- GIRONS LOPEZ M., WENNERSTRÖM H., NORDÉN L.Å., SEIBERT J. 2015. Location and density of rain gauges for the estimation of spatial varying precipitation. Geografiska Annaler, Series A: Physical Geography. Vol. 97(1) p. 167–179. DOI 10.3390/w12071973.
- GYASI-AGYEI Y. 2020. Identification of the optimum rain gauge network density for hydrological modelling based on radar rainfall analysis. Water. Vol. 12(7), 1906. DOI 10.3390/w12071906.
- HA K.J., JEON E.H., OH H.M. 2007. Spatial and temporal characteristics of precipitation using an extensive network of ground gauge in the Korean Peninsula. Atmospheric Research. Vol. 86(3–4) p. 330–339. DOI 10.1016/j.atmosres.2007.07.002.
- HYUN J.-Y., ROCKAWAY T.D., FRENCH M.N. 2016. Ground-level rainfall variation in Jefferson County, Kentucky. Journal of Hydrologic Engineering. Vol. 21(12), 05016029. DOI 10.1061/(ASCE) HE.1943-5584.0001438.
- INVEMAR, MADS, Alcaldia Mayor de Cartagena de Indias. 2012. Lineamientos para la adaptación al cambio climático de Cartagena de Indias. Proyecto Integración de la Adaptación al Cambio Climático en la Planificación Territorial y Gestión Sectorial de Cartagena de Indias [Guidelines for adaptation to climate change in Cartagena de Indias. Project Integration of Adaptation to Climate Change in Territorial Planning and Sectoral Management of Cartagena de Indias] [online]. Eds. G.X. Rojas, J. Blanco, F. Navarrete. 55th ed. Cartagena, Colombia. Instituto de Investigaciones Marinas y Costeras. [Access 17.04.2019]. Available at: http://hdl.handle.net/1834/6606
- INVEMAR, MADS, Alcaldia Mayor de Cartagena de Indias, CDKN 2014. Integración de la adaptación al cambio climático en la planificación territorial y gestión sectorial de Cartagena de Indias. Informe técnico final [Integration of adaptation to climate change in the territorial planning and sectoral management of Cartagena de Indias. Final technical report]. [online]. Eds. X. Rojas G., M. Ulloque, M. Lacoste. 62 nd ed. Serie de Publicaciones Generales del Invemar. No. 62. Santa Marta. Instituto de Investigaciones Marinas y Costeras pp. 222 [Access 16.04.2019]. Available at: http://hdl.handle.net/1834/6663
- IPCC 1997. The regional impacts of climate change: An assessment of vulnerability. Eds. R. Watson, M. Zinyowera, M. Richard, D. Dokken. UK. Cambridge University Press pp. 530.
- JAMESON A.R. 2017. Spatial and temporal network sampling effects on the correlation and variance structures of rain observations. Journal of Hydrometeorology. Vol. 18. No. 1 p. 187–196. DOI 10.1175/JHM-D-16-0129.1.
- KARIM T.H., KEYA D.R., AMIN Z.A. 2018. Temporal and spatial variations in annual rainfall distribution in Erbil province. Outlook on Agriculture. Vol. 47(1) p. 59–67. DOI 10.1177/0030727018762968.
- LOZANO-RIVAS W. 2018. Clima, hidrología y meteorología: Para ciencias ambientales e ingeniería [Climate, hydrology, and meteorology: For environmental science and engineering]. Bogotá. Universidad Piloto de Colombia. ISBN 9789588957760 pp. 508.
- MANDAPAKA P.V., Q IN X. 2013. Analysis and characterization of probability distribution and small-scale spatial variability of rainfall in Singapore using a dense gauge network. Journal of Applied Meteorology and Climatology. Vol. 52(12) p. 2781–2796. DOI 10.1175/JAMC-D-13-0115.1.
- MARKONIS Y., BATELIS S.C., DIMAKOS Y., MOSCHOU E., KOUTSOYIANNIS D. 2017. Temporal and spatial variability of rainfall over Greece. Theoretical and Applied Climatology. Vol. 130(1–2) p. 217–232. DOI 10.1007/s00704-016-1878-7.
- MASCARO G. 2017. Multiscale spatial and temporal statistical properties of rainfall in central Arizona. Journal of Hydrometeorology. Vol. 18(1) p. 227–245. DOI 10.1175/JHM-D-16-0167.1.
- MASCARO G. 2018. On the distributions of annual and seasonal daily rainfall extremes in central Arizona and their spatial variability. Journal of Hydrology. Vol. 559 p. 266–281. DOI 10.1016/j.jhydrol.2018.02.011.
- MERNIZ N., TAHAR A., BENMEHAIA A.M. 2019. Statistical assessment of rainfall variability and trends in northeastern Algeria. Journal of Water and Land Development. Vol. 40(1) p. 87–96. DOI 10.2478/jwld-2019-0009.
- MITRA A., APTE A., GOVINDARAJAN R., VASAN V., VADLAMANI S. 2018. Spatio-temporal patterns of daily Indian summer monsoon rainfall. Dynamics and Statistics of the Climate System. Vol. 3(1) p. 1–16. DOI 10.1093/climsys/dzy010.
- Onset 2010. Data logging rain gauge (RG3 and RG3-M) user’s manual. [online]. Onset. [Access 15.04.2019]. Available at: https://www.onsetcomp.com/files/manual_pdfs/10241-D-MAN-RG3.pdf
- ORIANI F., OHANA-LEVI N., MARRA F., STRAUBHAAR J., MARIETHOZ G., RENARD P., MORIN E. 2017. Simulating small-scale rainfall fields conditioned by weather state and elevation: A data-driven approach based on rainfall radar images. Water Resources Research. Vol. 53(10) p. 8512–8532. DOI 10.1002/2017WR020876.
- PELEG N., BEN-ASHER M., MORIN E. 2013. Radar subpixel-scale rainfall variability and uncertainty: Lessons learned from observations of a dense rain-gauge network. Hydrology and Earth System Sciences. Vol. 17(6) p. 2195–2208. DOI 10.5194/hess-17-2195-2013.
- PRIYAN K. 2015. Spatial and temporal variability of rainfall in Anand district of Gujarat state. Aquatic Procedia. Vol. 4 p. 713–720. DOI 10.1016/j.aqpro.2015.02.092.
- RODRÍGUEZ GONZÁLEZ B., PINEDA MARTÍNEZ L.F., GUERRA COBIÁN V.H. 2018. Análisis de la variabilidad de las precipitaciones en el Estado de Zacatecas, México, por medio de información satelital y pluviométrica [Precipitation variability analysis in the State of Zacatecas, México, by utilizing satellite information and gauges]. Ingeniería Investigación y Tecnología. Vol. 19(4) p. 1–12. DOI 10.22201/fi.25940732e.2018.19n4.031.
- SHAGHAGHIAN M.R., ABEDINI M.J. 2013. Rain gauge network design using coupled geostatistical and multivariate techniques. Scientia Iranica. Vol. 20(2) p. 259–269. DOI 10.1016/j.scient.2012.11.014.
- SHASTRI H., PAUL S., GHOSH S., KARMAKAR S. 2015. Impacts of urbanization on Indian summer monsoon rainfall extremes. Journal of Geophysical Research: Atmospheres. Vol. 120 p. 495–516. DOI 10.1002/2014JD022061.
- SUNGMIN O., FOELSCHE U. 2019. Assessment of spatial uncertainty of heavy rainfall at catchment scale using a dense gauge network. Hydrology and Earth System Sciences. Vol. 23(7) p. 2863–2875. DOI 10.5194/hess-23-2863-2019.
- SUNILKUMAR K., NARAYANA RAO T., SATHEESHKUMAR S. 2016. Assessment of small-scale variability of rainfall and multi-satellite precipitation estimates using measurements from a dense rain gauge network in Southeast India. Hydrology and Earth System Sciences. Vol. 20(5) p. 1719–1735. DOI 10.5194/hess-20-1719-2016.
- SVOBODA V., MÁCA P., HANEL M., PECH P. 2015. Spatial correlation structure of monthly rainfall at a mesoscale region of north-eastern Bohemia. Theoretical and Applied Climatology. Vol. 121 (1–2) p. 359–375. DOI 10.1007/s00704-014-1241-9.
- TESSEMA K.B., HAILE A.T., AMENCHO N.W., HABIB E. 2020. Effect of rainfall variability and gauge representativeness on satellite rainfall accuracy in a small upland watershed in southern Ethiopia. Hydrological Sciences Journal. Spec. Iss. Hydrological data: Opportunities and barriers. DOI 10.1080/02626667.2020.1770766.
- TOKAY A., D’ADDERIO L.P., PORCÙ F., WOLFF D.B., PETERSEN W.A. 2017. A field study of footprint-scale variability of raindrop size distribution. Journal of Hydrometeorology. Vol. 18(12) p. 3165–3179. DOI 10.1175/JHM-D-17-0003.1.
- TOKAY A., D’ADDERIO L.P., WOLFF D.B., PETERSEN W.A. 2016. A field study of pixel-scale variability of raindrop size distribution in the Mid-Atlantic region. Journal of Hydrometeorology. Vol. 17(6) p. 1855–1868. DOI 10.1175/JHM-D-15-0159.1.
- TOKAY A., ÖZTÜRK K. 2012. An experimental study of the small-scale variability of rainfall. Journal of Hydrometeorology. Vol. 13(1) p. 351–365. DOI 10.1175/JHM-D-11-014.1.
- TOKAY A., ROCHE R.J., BASHOR P.G. 2014. An experimental study of spatial variability of rainfall. Journal of Hydrometeorology. Vol. 15(2) p. 801–812. DOI 10.1175/JHM-D-13-031.1.
- WARWADE P., TIWARI S., RANJAN S., CHANDNIHA S.K., ADAMOWSKI J. 2018. Spatio-temporal variation of rainfall over Bihar State, India. Journal of Water and Land Development. No. 36 p. 183–197. DOI 10.2478/jwld-2018-0018.
- WMO 2008. Guide to hydrological practices. Vol. I: Hydrology – From measurement to hydrological information No. 168. 6 th ed. [online]. World Meteorological Organization. [Access 17.04.2019]. Available at: https://whycos.org/guide/
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-967e41b9-e3eb-4f21-80b4-73ffba348a18