Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We describe construction and investigation results of optical trace gas sensor working in the 3.334-3.337 μm spectral range. Laser spectroscopy was performed with a multipass cell. A setup was elaborated for detection of ethane at the 3.3368035 μm absorption line. Analysis of the gas spectra and the experiment have shown that, beside C2H6, the sensor is suitable for simultaneous detection of methane, formaldehyde and water vapor. Due to nonlinearity of the laser power characteristic we decided to detect the fourth harmonic of signal. Additional laser wavelength modulation was applied for optical interference suppression. In result, the precision of ethane detection of approximately 80 ppt has been achieved for the averaging time of 20 seconds. Long-term stability as well as the measurement linearity have also been positively tested. The system is suitable for detecting potential biomarkers directly in human breath.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
271--282
Opis fizyczny
Bibliogr. 49 poz., rys., wykr., wzory
Twórcy
autor
- University of Warsaw, Faculty of Physics, Institute of Experimental Physics, Pasteura 5, 02-093 Warsaw, Poland
autor
- University of Warsaw, Faculty of Physics, Institute of Experimental Physics, Pasteura 5, 02-093 Warsaw, Poland
Bibliografia
- [1] Zhang, L., Tian, G., Li. J., & Yu, B. (2014). Applications of absorption spectroscopy using quantum cascade lasers. Applied Spectroscopy, 68(10), 1095-1107. https://doi.org/10.1366/14-00001
- [2] Zahniser, M. S., Nelson, D. D., McManus, J. B., Herndon, S. C., Wood, B. C., Shorter, J. H., Lee, B. H., Santoni, G. W., Jiménez, R., Daube, B. C., Park, S., Kort, H. A. & Wofsy, S. C. (2009, January). Infrared QC laser applications to field measurements of atmospheric trace gas sources and sinks in environmental research: enhanced capabilities using continuous wave QCLs. In Quantum Sensing and Nanophotonic Devices VI (Vol. 7222, p. 72220H). International Society for Optics and Photonics. https://doi.org/10.1117/12.815172
- [3] Buszewski, B., Grzywinski, D., Ligor, T., Stacewicz, T., Bielecki, Z., & Wojtas, J. (2013). Detection of volatile organic compounds as biomarkers in breath analysis by different analytical techniques. Bioanalysis, 5(18), 2287-2306. https://doi.org/10.4155/bio.13.183
- [4] Rudnicka, J., Walczak, M., Kowalkowski, T., Jezierski, T., & Buszewski. B. (2014). Determination of volatile organic compounds as potential markers of lung cancer by gas chromatography-mass spectrometry versus trained dogs. Sensors and Actuators B: Chemical, 202, 615-621. https://doi.org/10.1016/j.snb.2014.06.006
- [5] Refat, M., Moore, T. J., Kazui, M., Risby, T. H., Perman, J. A., & Schwarz, K. B. (1991). Utility of breath ethane as a noninvasive biomarker of vitamin E status in children. Pediatric Research, 30(4), 396-403. https://doi.org/10.1203/00006450-199111000-00002
- [6] Svedahl, S. R., Svendsen, K., Tufvesson, E., Romundstad, P. R., Sjaastad, A. K., Qvenild, T., & Hilt, B. (2013). Inflammatory markers in blood and exhaled air after short-term exposure to cooking fumes. Annals of Occupational Hygiene, 57(1), 230-239. https://doi.org/10.1093/annhyg/mes069
- [7] McCurdy, M. R., Bakhirkin, Y., Wysocki, G., Lewicki, R., & Tittel, F. K. (2007). Recent advances of laser-spectroscopy-based techniques for applications in breath analysis. Journal of Breath Research, 1(1), 014001. https://doi.org/10.1088/1752-7155/1/1/014001
- [8] Cope, K. A., Solga, S. F., Hummers, L. K., Wigley, F. M., Diehl, A. M., & Risby, T. H. (2006). Abnormal exhaled ethane concentrations in scleroderma. Biomarkers. 11(1), 70-84. https://doi.org/10.1080/13547500500515046
- [9] Barker, M., Hengst, M., Schmid, J., Buers, H. J., Mitlermaier, B., Klemp, D., & Koppmann, R. (2006). Volatile organic compounds in the exhaled breath of young patients with cystic fibrosis. European Respiratory Journal, 27(4), 929-936. https://doi.org/10.1183/09031936.06.00085105
- [10] Paredi, P., Kharitonov, S. A., Leak, D., Shah, P. L., Cramer, D., Hodson, M. E., & Barnes, P. J. (2000). Exhaled ethane is elevated in cystic fibrosis and correlates with carbon monoxide levels and airway obstruction. American Journal of Respiratory and Critical Care Medicine, 161 (3), 1247-1251. https://doi.org/10.1164/ajrccm.161.4.9906122
- [11] Kanoh, S., Kobayashi, H., & Motoyoshi, K. (2005). Exhaled ethane: an in vivo biomarker of lipid peroxidation in interstitial lung diseases. Chest, 128(3), 2387-2392. https://doi.org/10.1378/chest.128.4.2387
- [12] Riely, C. A., Cohen, G., & Lieberman, M. (1974). Ethane evolution: a new index of lipid peroxidation. Science, 183(4121), 208-210. https://doi.org/10.1126/science.183.4121.208
- [13] Lawrence, G. D., & Cohen, G. (1982). Ethane exhalation as an index of in vivo lipid peroxidation: concentrating ethane from a breath collection chamber. Analytical Biochemistry, 122(1), 283-290. https://doi.org/10.1016/0003-2697(82)90282-2
- [14] Puri, B. K., Ross, B. M., & Treasaden, I. H. (2008). Increased levels of ethane, a non-invasive, quantitative, direct marker of n-3 lipid peroxidation, in the breath of patients with schizophrenia. Progress in Neum-Psychopharmacology and Biological Psychiatry, 32(2), 858-862. https://doi.org/10.1016/j.pnpbp.2008.01.001
- [15] Ross, B. M., Maxwell, R., & Glen, I. (2011). Increased breath ethane levels in medicated patients with schizophrenia and bipolar disorder arc unrelated to erythrocyte omega-3 fatty acid abundance. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35(1), 446-453. https://doi.org/10.1016/j.pnpbp.2010.11.032
- [16] Ross, B. M., Shah, S., & Peet, M. (2011). Increased breath ethane and pentane concentrations in currently unmedicated patients with schizophrenia. Open Journal of Psychiatry, 1(01), 1. https://doi.org/10.4236/ojpsych.2011.11001
- [17] Paredi, P., Kharitonov, S. A., & Barnes, P. J. (2000). Elevation of exhaled ethane concentration in asthma. American Journal of Respiratory and Critical Care Medicine, 162(3), 1450-1454. https://doi.org/10.1164/ajrccm.162.4.2003064
- [18] Stevenson, K. S., Radhakrishnan, K., Patterson, C. S., McMillan, L. C., Skeldon, K. D., Buist, L., & Shiels, P. G. (2008). Breath ethane peaks during a single haemodialysis session and is associated with time on dialysis. Journal of Breath Research, 2(1), 026004. https://doi.org/10.1088/1752-7155/2/2/026004
- [19] Patterson, C. S., McMillan, L. C., Stevenson, K., Radhakrishnan, K., Shiels, P. G., Padgett, M. J., & Skeldon, K. D. (2007). Dynamic study of oxidative stress in renal dialysis patients based on breath ethane measured by optical spectroscopy. Journal of Breath Research, 1(1), 026005. https://doi.org/10.1088/1752-7155/1/2/026005
- [20] Pico, Y., Altarhan, A. H., & Barcelo, D. (2020). How recent innovations in gas chromatography-mass spectrometry have improved pesticide residue determination: An alternative technique to be in your radar. TrAC Trends in Analytical Chemistry, 122, 115720. https://doi.org/10.1016/j.trac.2019.115720
- [21] Patterson, C. S., McMillan, L. C., Longbottom, C., Gibson, G. M., Padgett, M. J., & Skeldon, K. D. (2007). Portable optical spectroscopy for accurate analysis of ethane in exhaled breath. Measurement Science and Technology, 18(4), 1459. https://doi.org/10.1088/0957-0233/18/5/035
- [22] Halmer, D., Thelen, S., Hering. P., & Mürtz, M. (2006). Online monitoring of ethane traces in exhaled breath with a difference frequency generation spectrometer. Applied Physics B, 85(1), 437-443. https://doi.org/10.1007/s00340-006-2288-9
- [23] Dahnke, H., Kleine, O., Hering, P., & Mürtz, M. (2001). Real-time monitoring of ethane in human breath using mid-infrared cavity leak-out spectroscopy. Applied Physics B, 72(1). 971-975. https://doi.org/10.1007/s003400100609
- [24] Abela, J. K., Skeldon, K. D., Stuart. R. C., & Padgett, M. J. (2009). Exhaled ethane concentration in patients with cancer of the upper gastrointestinal tract - a proof of concept study. Bioscience Trends. 3(2). https://pubmed.ncbi.nlm.nih.gov/20103832/
- [25] von Basum, G., Dahnke, H., Halmer, D., Hering, P., & Mürtz, M. (2003). Online recording of ethane traces in human breath via infrared laser spectroscopy. Journal of Applied Physiology, 95(5), 2583-2590. https://doi.org/10.1152/japplphysiol.00542.2003
- [26] Rothman, L. S., Gordon, I. E., Babikov, Y., Barbe, A., Benner, D. C., Bernath, P. F., & Wagner, G. (2013). The HITRAN2012 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 130, 4-50. https://doi.org/10.1016/j.jqsrt.2013.07.002
- [27] Demtröder, W. (1973). Laser spectroscopy (5th ed.). Springer, https://doi.org/10.1007/978-3-642-53859-9
- [28] Herriott, D. R., & Schulte, H. J. (1965). Folded optical delay lines. Applied Optics, 4(1), 883-889. hitps://doi.org/10.1364/AO.4.000883
- [29] Belina Brzozowski, A., Winkowski, M., & Stacewicz, T. (2021). Software for design and analysis of multi-pass absorption cells. Ukrainian Journal of Physical Optics, 22(1), 1-11. https://doi.org/10.3116/16091833/22/1/1/2021
- [30] Winkowski, M., & Stacewicz, T. (2021). Optical interference suppression using wavelength modulation. Optics Communications. 480, 126464. https://doi.org/10.1016/j.optcom.2020.126464
- [31] Krzempek, K., Jahjah. M., Lewicki, R., Stefański, P., So, S., Thomazy, D., & Tittel, F. K. (2013). CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell. Applied Physics B, 112(3), 461-465. https://doi.org/10.1007/s00340-013-5544-9
- [32] Patimisco, P., Scamarcio, G., Tittel, F. K., & Spagnolo, V. (2014). Quartz-enhanced photoacoustic spectroscopy: a review. Sensors, 14(3), 6165-6206. https://doi.org/10.3390/s140406165
- [33] Cutler, L. S., & Searle, C. L. (1966). Some aspects of the theory and measurement of frequency fluctuations in frequency standards. Proceedings of the IEEE, 54(1), 136-154. https://doi.org/10.1109/PROC.1966.4627
- [34] Stacewicz.T., Bielecki, Z., Wojtas, J., Magryta, P., Mikołajczyk. J., & Szabra, D. (2016). Detection of disease markers in human breath with laser absorption spectroscopy. Opto-Electronics Review, 24(1), 82-94. https://doi.org/10.1515/oere-2016-0011
- [35] Alduchov, O. A., & Eskridge, K. K. (1996). Improved Magnus form approximation of saturation vapor pressure. Journal of Applied Meteorology and Climatology, 35(3), 601-609. https://doi.org/10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2
- [36] Le Marchand. L., Wilkens, L. R., Harwood, P., & Cooney, R. V. (1992). Use of breath hydrogen and methane as markers of colonic fermentation in epidemiologic studies: circadian patterns of excretion. Environmental Health Perspectives, 98, 199-202. https://doi.org/10.1289/ehp.9298199
- [37] NOAA Global Monitoring Laboratory, (n.d.). Trends in Atmospheric Methane. U.S. Department of Commerce. Retrieved January 9, 2022, from https://gml.noaa.gov/ccgg/trends_ch4/
- [38] Scotoni, M., Rossi, A., Bassi. D., Buffa. R., lannotta, S., & Boschetti, A. (2006). Simultaneous detection of ammonia, methane and ethylene at 1.63 μm with diode laser photoacoustic spectroscopy. Applied Physics B, 82(2), 495-500. https://doi.org/10.1007/s00340-005-2077-x
- [39] Moskalenko, K. L., Nadezhdinskii, A. I., & Adamovskaya, I. A. (1996). Human breath trace gas content study by tunable diode laser spectroscopy technique. Infrared Physics & Technology, 37(1), 181-192. https://doi.org/10.1016/1350-4495(95)00097-6
- [40] Wang, C., & Sahay, P. (2009). Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits. Sensors. 9(10), 8230-8262. https://doi.org/10.3390/s91008230
- [41] Wehinger, A., Schmid, A., Mechtcheriakov, S., Ledochowski, M., Grabmer, C., Gastl, G. A., & Amann, A. (2007). Lung cancer detection by proton transfer reaction mass-spectrometric analysis of human breath gas. International Journal of Mass Spectrometry, 265(1), 49-59. https://doi.org/10.1016/j.ijms.2007.05.012
- [42] Fernandes, M. P., Venkatesh, S., & Sudarshan, B. G. (2015). Early detection of lung cancer using nano-nose - a review. The Open biomedical Engineering Journal, 9, 228. https://doi.org/10.2174/1874120701509010228
- [43] Fuchs, P., Loeseken, C., Schubert, J. K., & Miekisch, W. (2010). Breath gas aldehydes as biomarkers of lung cancer. International Journal of Cancer, 126(11), 2663-2670. https://doi.org/10.1002/ijc.24970
- [44] Miller, J. H., Bakhirkin, Y. A., Ajtai, T., Tittel, F. K., Hill, C. J., & Yang, R. Q. (2006). Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interhand cascade laser. Applied Physics B, 85(1), 391-396. https://doi.org/10.1007/s00340-006-2310-2
- [45] Hirschmann, C. B., Lehtinen, J., Uotila, J., Ojala, S., & Keiski, R. L. (2013). Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source. Applied Physics B, 111(3), 603-610. https://doi.org/10.1007/s00340-013-5379-4
- [46] Ebeler, S. H., Clifford, A. J., & Shibamoto, T. (1997). Quantitative analysis by gas chromatography of volatile carbonyl compounds in expired air from mice and human. Journal of Chromatography B: Biomedical Sciences and Applications, 702(1-2), 211-215. https://doi.org/10.1016/S0378-4347(97)00369-1
- [47] Costa, S., Costa, C., Madureira, J., Valdiglesias, V., Teixeira-Gomes, A., de Pinho, P. G., & Teixeira, J. P. (2019). Occupational exposure to formaldehyde and early biomarkers of cancer risk, immunotoxicity and susceptibility. Environmental Research, 179, 108740. https://doi.org/10.1016/jenvres.2019.108740
- [48] Tam, A. C. (1986). Applications of photoacoustic sensing techniques. Reviews of Modern Physics, 58(1), 381. https://doi.org/10.1103/RevModPhys.58.381
- [49] Winkowski, M., & Stacewicz, T. (2020). Optical detection of formaldehyde in air in the 3.6 μm range. Biomedical Optics Express, 11(12), 7019-7031. https://doi.org/10.1364/BOE405384
Uwagi
1. The research was supported by the Polish National Science Centre, research project No. 2016/23/B/ST7/03441
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-967b6a22-f55d-421a-b68e-218c85fa7b94