PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of Supplemental Irrigation on Crop Yields: Case Study Kales (Brassica Oleracea) Crop

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to investigate the effects that supplemental irrigation (SI) has on the Kale (Brassica Oleracea) crop yields as compared to the wholly rain-fed crop. The experiments were conducted in Kieni, Central Kenya where the rainfall pattern was bimodal. The planting for rain-fed crops was done in three blocks, each measuring 10×1 m with a spacing of 30 cm between plants and 45 cm between the rows of plants; the procedure was repeated for the crops receiving SI. The average weekly yields were computed for both crops for each season comprised of 14 weeks. The average weekly yields were subjected to Analysis of Variance (ANOVA) to determine whether the average yields from the rain-fed and supplemental irrigated crops were statistically different. This was done with MS Excel 2016 spread sheets by setting a statistical level of significance of 5%. The F value was 17.94 higher than the critical value of 4.01 while the P-value of 9×10–5 was lower than the 5% level of confidence meaning that there was a significant difference in the yield means of the rain-fed and SI crops. The total rain-fed crop yields for the period was 147.0 Kgs and that of the one under SI was 238 Kgs, an increase of about 62%. Therefore, supplemental irrigation can be adopted in the areas where rainfall trends are declining to increase the crop yields when all other factors remain constant for farmers – to increase resilience.
Rocznik
Strony
209--213
Opis fizyczny
Bibliogr. 18 poz., tab.
Twórcy
  • Institute for Climate Change and Adaptation, University of Nairobi, Kenya
autor
  • Institute for Climate Change and Adaptation, University of Nairobi, Kenya
  • Institute for Climate Change and Adaptation, University of Nairobi, Kenya
  • Department of Land Resource Management & Agricultural Technology, University of Nairobi, Kenya
Bibliografia
  • 1. Adary, A., Hachum, A., Oweis, T. and Pala, M. 2002. Wheat productivity under SI in Northern Iraq.
  • 2. CGoN C.G.o.N. 2013. Strategic Plan 2013–2018 in: L. Department of Agriculture , Fisheries, and Co-operative Development: (Ed.).
  • 3. Fox, P., and Rockström, J. 2003. Supplemental irrigation for dry-spell mitigation of rainfed agriculture in the Sahel. Agricultural water management, 61(1), 29–50.Esri, G.I.S., 2006. Mapping Software. ArcGIS: http://www.esri.com/software/arcgis.
  • 4. GoK 2010. National Climate Change Response Strategy, in: M. o. E. a. M. Resources (Ed.), Nairobi.
  • 5. Government of Kenya 2014. 2014 Economic Survey Report Highlights. Ministry of Devolution and Planning.
  • 6. Hatibu, N., Mutabazi, K., Senkondo, E. M., & Msangi, A. S. K. 2006. Economics of rainwater harvesting for crop enterprises in semi-arid areas of East Africa. Agricultural Water Management, 80(1–3), 74–86.
  • 7. IPCC. 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, in: C. B. Field, et al. (Eds.), (eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY , USA. pp. 1132.
  • 8. Kaluli, J. W., Nganga, K., Home, P. G., Gathenya, J. M., Muriuki, A. W. and Kihurani, A. W. 2012. Effects on rainwater harvesting and drip irrigation on crop performance in an Arid and Semi-arid environment. JAGST Vol 14(2) 2012.
  • 9. Karienye, K.D., Mwangi, G.P., Kaguai, W.I., Waweru, E. and Muthoni, M.D. 2012. Impact of Climate Variability on Food Security and Biodiversity Conservation in Nyeri County, Kenya.
  • 10. Knowles, N., Dettinger, M.D., and Cayan, D.R. .2006. Trends in snowfall versus rainfall in the western United States. Journal of Climate 19:4545–4559.
  • 11. Kulshreshtha, S.N. 2011. Climate change, prairie agriculture, and prairie economy: the new normal. Canadian Journal of Agricultural Economics/Revue canadienne d’agroeconomie 59, 19–44.
  • 12. Leuzinger, S., Fatichi, S., Cusens, J., Körner, C. and Niklaus P.A. 2015. The ‘island effect’in terrestrial global change experiments: a problem with no solution? AoB Plants 7.
  • 13. Nderitu, M., Oludhe, C., Ali, A.A., Omondi, P. and Makui, P. 2016. Analysis of Rainfall and Temperature Variability in Kieni; Nyeri County. International Journal of Innovative Research and Development 5.
  • 14. Ngigi, S., Kariuke, J. and Allan, K. 2011. Rainwater harvesting and management for improving agricultural productivity in Arid and Semi – Arid Areas of Kenya.
  • 15. Oweis, T. 1997. Supplemental irrigation: A highly efficient water-use practice. ICARDA.
  • 16. Oweis, T. and Hachum, A. 2012. SI, a highly efficient water-use practice. ICARDA, Aleppo, Syria. iv + 28 pp.
  • 17. Sacks, W.J. and Kucharik, C.J. 2011. Crop management and phenology trends in the U.S. corn belt: Impacts on yields, evapotranspiration and energy balance. Agriculture, Forestry and Meteorology 151:882–894.
  • 18. Tietjen, B., Schlaepfer, D.R., Bradford, J. B., Lauenroth, W. K., Hall, S. A., Duniway, M. C., Hochstrasser, T., Jia, G., Munson, S. M. and Pyke, D. A. 2017. Climate changeinduced vegetation shifts lead to more ecological droughts despite projected rainfall increases in many global temperate drylands. Global Change Biology 23:2743–2754.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-96784e54-eebc-4493-8a43-eba6990a860d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.