PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Obtaining copper nanoparticles from nanocomposites of poly(vinyl alcohol) matrix

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: In this paper the development of technology for production of copper nanoparticles by thermal debinding matrix nanocomposite polymer nanofibers with reinforced of copper was reported. Electrospinning technique was used to synthesis composite nanofibers using a precursor composed of poly(vinyl alcohol) (PVA), copper acetate (CuAC) and acetic acid (C2H3OH). The resulting nanofiber was subjected to a high temperature in order to debinding of the organic part. The aim of this study was to attempt to obtain a one-dimensional nanostructured materials. Design/methodology/approach: The resulting nanostructures have been characterized using high resolution scanning electron microscopy (SEM). The influence of debinding conditions on one-dimensional nanostructured materials was observed. Research was execute on scanning electron microscope. Findings: On the basis of carried out researches the impact of the debinding of nanocomposite polymer nanofibers on the diameter of obtained nanostructures have been shown. The influence of debinding conditions on composite nanofibers were determined. Research limitations/implications: The research was carried out on technological variants, not on final elements. Originality/value: The paper presents attempt to obtain a one-dimensional nanostructured materials.
Rocznik
Strony
85--92
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] L.A. Dobrzański, B. Nieradka, M. Macek, W. Matysiak, Influence of the electrospinning parameters on the morphology of composite nanofibers, Archives of Materials Science and Engineering 69/1 (2014) 32-37.
  • [2] Applied Nanotechnology, The Conversion of Research Results to Products, A volume in Micro and Nano Technologies (2014) 49-60.
  • [3] S. Chaturvedi, P.N. Dave, N.K. Shah, Applications of nano-catalyst in new era, Journal of Saudi Chemical Society 16/3 (2012) 307-325.
  • [4] J. Doshi, D.H. Reneker, Electrospinning process and application of electrospun fibers, Journal of Electrostatics 35 (1995) 151-160.
  • [5] X. Chen, H.J. Shluesner, Nanosilver: A nanoproduct in medical application, Toxicology Letters 176 (2008) 1-12.
  • [6] K. Kurzydłowski, M. Lewandowska, Nanomaterials Engineering structural and functional, Scientific Publishing PWN, 2011 (in Polish).
  • [7] R. Borkar, M. Bohr, S. Jourdan, Advancing Moore’s Law on 2014, Intel, 2014.
  • [8] L.K. Shrestha, Self-Assembled Fullerene Nanostructures at Liquid Interface, Austin Journal of Nanomedicine & Nanotechnology 2/5 (2014).
  • [9] J. Chen, B.J. Wiley, Y. Xia, One-Dimensional Nanostructure of Metals: Large-Scale Synthesis and Some Potential Applications, Langmuir 23 (2007) 4120-4129
  • [10] C.R. Woods, L. Britnell, A. Eckmann, R.S. Ma, J.C. Lu, H.M. Guo, X. Lin, G.L. Yu, Y. Cao and others, Commensurate-incommensurate transition on graphene on hexagonal boron nitride, Nature Physics (2014)
  • [11] H. Wu, R. Zhang, X. Liu, D. Lin, W. Pan, Electrospinning of Fe, Co, and Ni Nanofibers: Synthesis, Assembly, and Magnetic Properties, Chemistry of Materials. 19 (2007) 3506-3511.
  • [12] A. Khalil, B. Singh Lalia, R. Hashaikeh, M. Khraisheh, Electrospun metallic nanowires: Synthesis, characterization, and applications, Journal of Applied Physics 114 (2013) 171301.
  • [13] W. Świętoszowski, Application of nanofibers in medicine, engineering nanomaterials, structural and functional, ed. K. Kurzydłowski, M. Lewandowska, publishing house PWN, Warsaw (2010) 256-271 (in Polish).
  • [14] S. Ramakrishna, K. Fujihara, W.E. Teo, T.C. Lim, Z. Ma, An introduction to electrospinning and nanofibers, World Scientific, Singapore (2005).
  • [15] L.A. Dobrzański, A. Hudecki, Structure, geometrical characteristics and properties of biodegradable micro- and polycaprolactone nanofibers, Archives of Materials Science and Engineering 70/1 (2014) 5-13.
  • [16] L.A. Hoover, J.D. Schiffman, M. Elimelech, Nanofibers in thin-film composite membrane support layers: Enabling expanded application of forward and pressure retarded osmosis, Desalination Vol. 308 (2013) 73-81.
  • [17] G. S. Lotey, S. Kumar, N. K. Verma, Fabrication and electrical characterization of highly ordered copper nanowires, Applied Nanoscience 2/1 (2012) 7-13.
  • [18] X. Li, M.A. Kanjwal, L. Lin, I.S. Chronakis, Electrospun polyvinyl-alcohol nanofibers as oral fast-dissolving delivery system of caffeine and riboflavin, Colloids and Surfaces B: Biointerfaces 103 (2013) 182-188.
  • [19] L. A. Dobrzański (ed.), Polymer nanofibers produced by electrospinning applied in regenerative medicine, Open Access Library, Annal V (2015) Issue 3, 1-175
  • [20] P.V. Adhyapak, P. Karandikar, K. Vijayamohanan, A.A. Athawale, A.J. Chandwad-kar, Synthesis of silver nanowires inside mesoporous MCM-41 host, Materials Letters 58, 1168-1171, 2004.
  • [21] M.A. Kostowskyj, R.J. Gilliam, D.W. Kirk, S.J. Thorpe, Silver nanowire catalysts for alkaline fuel cells, International Journal of Hydrogen Energy 22, 5773-5778, 2008.
  • [22] W.C. Zhang, X.L. Wu, H.T. Chen. Y.J. Gao, J. Zhu, G.S. Huang, P.L. Chu, Self-organized formation of silver nanowires, nanocubes and bipyramids via a solvothermal method, Acta Materialia 65 (2008) 2508-2513.
  • [23] B. Wiley, Y. Sun, J. Chen, H. Cang, Z.-Y. Li, X. Li, Y. Xia, Shape-Controlled Synthesis of Silver and Gold Nanostructures, MRS Bulletin 5 (30) 356-361, 2005.
  • [24] X. Tao, L. Lu, M. Shao, X. Huang, Silver Nanowire Film: Green Synthesis and Its Surface Enhanced Raman Scattering, Chinese Journal of Chemistry 27, 891-894, 2009.
  • [25] B.A. Korgel, D. Fitzmaurice, Self-Assembly of Silver Nanocrystals into Two-Dimensional Nanowire Arrays, Advanced Materials 10, 661-665, 1998.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-96748ed7-61d0-44d7-bea3-2d635715aeea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.