PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of preparation method on the performance of PtSn/Al2O3 &enspcatalysts for acetic acid hydrogenation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
PtSn/Al2O3 &enspcatalysts with a given loading of 1 wt% Pt and 1 wt% Sn were prepared by co-impregnation or successive impregnation with aqueous solutions of Pt, Sn precursors and a commercial alumina. The catalysts were characterized by N2 &enspadsorption, H2-TPR (H2&ensp temperature-programmed reduction), H2-pulse chemisorption, XPS (X-ray photoelectron spectroscopy) and CO-FTIR (Fourier transform infrared spectroscopy), and tested in the hydrogenation of acetic acid. The results showed that the preparation method affected both the chemical properties and their performance in the hydrogenation of acetic acid. Sn enrichment on the catalysts surface was observed on the co-impregnated catalyst and catalyst in which the Pt precursor had been loaded first. It was found that the modification of Pt was a function of the sequence of Sn addition as revealed by CO-FTIR. Co-impregnated catalyst showed the highest activity and ethanol selectivity.
Rocznik
Strony
11--17
Opis fizyczny
Bibliogr. 40 poz., tab., wykr., wz.
Twórcy
autor
  • East China University of Science and Technology, Engineering Research Center of Large Scale Reactor Engineering and Technology of the Ministry of Education, State Key Laboratory of Chemical Engineering, Shanghai 200237, China
autor
  • East China University of Science and Technology, Engineering Research Center of Large Scale Reactor Engineering and Technology of the Ministry of Education, State Key Laboratory of Chemical Engineering, Shanghai 200237, China
autor
  • East China University of Science and Technology, Engineering Research Center of Large Scale Reactor Engineering and Technology of the Ministry of Education, State Key Laboratory of Chemical Engineering, Shanghai 200237, China
autor
  • East China University of Science and Technology, Engineering Research Center of Large Scale Reactor Engineering and Technology of the Ministry of Education, State Key Laboratory of Chemical Engineering, Shanghai 200237, China
autor
  • East China University of Science and Technology, Engineering Research Center of Large Scale Reactor Engineering and Technology of the Ministry of Education, State Key Laboratory of Chemical Engineering, Shanghai 200237, China
Bibliografia
  • 1. Velu, S. & Santosh, K.G. (2008). A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol. Energ. Fuel. 22, 814-839. DOI: 10.1021/ef700411x.
  • 2. Yoneda, N., Kusano, S., Yasui, M., Pujad, P. & Wilcher, S. (2001). Recent advances in processes and catalysts for the production of acetic acid. Appl. Catal. A: Gen. 221, 253-265. DOI: 10.1016/S0926-860X (01) 00800-6.
  • 3. Mahajan, S., Nickolas, Menzies, W.R. & Albrigh, L.F. (1977). Partial oxidation of light hydrocarbons. 1. Major differences noted in various tubular reactors. Ind. Eng. Chem. Proc.Des. Dev., 1977, 16(3), 271-274. DOI: 10.1021/i260063a003.
  • 4. Sidjabat, O. & Trimm, D.L. (2000). Nickel-magnesia catalysts for the steam reforming of light hydrocarbons. Top. Catal. 11-12(1-4), 279-282. DOI: 10.1023/A:1027212301077.
  • 5. Mahajan, S., Nickolas, D.M., Sherwood, F., Menzies, W.R. & Albrigh, L.F. (1977). Partial oxidation of light hydrocarbons. 2. New techniques for investigating surface reactions. Ind. Eng. Chem. Proc. Des. Dev., 16 (3): 275-278. DOI: 10.1021/ i260063a0045.
  • 6. Yarze, J.C. & Lockerbie, T.E. Catalytic steam reforming of light liquid hydrocarbons. http://web.anl.gov/PCS/acsfuel/preprint%20archive/Files/04_1_CLEVELAND_0460_0078.pdf
  • 7. Van Dyk, J.C., Keyser, M.J. & Coertzen, M. (2006). Syngas production from South African coal sources using Sasol- Lurgi gasifiers. Int. J. Coal Geol. 65, 243-253. DOI: 10.1016/j. coal.2005.05.007.
  • 8. Minchener, A.J. (2005). Coal gasification for advanced power generation. Fuel 84, 2222-2235. DOI: 10.1016/j. fuel.2005.08.035.
  • 9. Aly, M. & Baumgarten, E. (2001). Hydrogenation of hexanoic acid with different catalysts. Appl. Catal. A: Gen. 210, 1-12. DOI: 10.1016/S0926-860X(00)00791-2.
  • 10. Turek, T., Trim D.L. & Cant, N.W. (1994). The Catalytic hydrogenolysis of esters to alcohols. Catal. Rev. 36(4), 645-683. DOI: 10.1080/01614949408013931.
  • 11. Rao, R., Dandekar, A., Baker, R.T.K. & Vannice, M.A. (1997). P roperties of copper chromite catalysts in hydrogenation reactions. J. Catal. 171, 406-419. DOI: 10.1006/jcat.1997.1832.
  • 12. Natal Santiago, M.A., Sánchez-Castillo, M.A., Cortright, R.D. & Dumesic, J.A. (2000). Catalytic reduction of acetic acid, methyl acetate, and ethyl acetate over silica-supported copper. J. Catal. 193, 16-28. DOI:10.1006/jcat.2000.2883.
  • 13. Onyestyáka, G., Szabolcs Harnosa, S., Klébert, S., Stolcová, M., Kaszonyi, A. & Kalló, D. (2013). Selective reduction of acetic acid to ethanol over novel Cu2In/Al2O3 catalyst. Appl. Catal. A: Gen. 464-465, 313-321. DOI:1 0.1016/j. apcata.2013.05.042.
  • 14. Pestman, R., Koster, R.M., Boellaard, E., van derKraan, A.M. & Ponec, V. (1998). Identification of the active sites in the selective hydrogenation of acetic acid to acetaldehyde on iron oxide catalysts. J. Catal. 174, 142-152. DOI: 0021-9517/98.
  • 15. Pestman, R., van Duijne, A., Pieterse, J.A.Z. & Ponec, V. (1995). The formation of ketones and aldehydes from carboxylic acids, structure-activity relationship for two competitive reactions. J. Mol. Catal. A: Chem. 103, 175-l80. DOI: 1381-1169/95.
  • 16. Pestman, R., Koster, R.M., Pieterse, J.A.Z. & Ponec, V. (1997). Reacti ons of carboxylic acids on oxides: 1. Selective hydrogenation of acetic acid to acetaldehyde. J. Catal. 168, 255-264. DOI: 10.1006/jcat.1997.1623.
  • 17. Rachmady, W. & Vannice, M.A. (2000). Acetic acid hydrogenation over supported platinum catalysts. J. Catal. 192, 322-334. DOI: 10.1006/jcat.2000.286.
  • 18. Rachmady, W. & Vannice, M.A. (2002). Acetic acid reduction by H2 over supported Pt catalysts: A DRIFTS and TPD/ TPR study. J. Catal. 207, 317-330. DOI: 10.1006/jcat.2002.3556.
  • 19. Alcala, R., Shabaker, J.W., Huber, G.W., Sanchez-Castillo, M.A. & Dumesic, J.A. (2005). Experimental and DFT studies of the conversion of ethanol and acetic acid on PtSn-based catalysts. J. Phys. Chem. B. 109, 2074-2085. DOI: 10.1021/ jp049354t.
  • 20. Hoang, D.L., Farrage, S.A-F., Radnik, J., Pohl, M-M., Schneider, M., Lieske, H. & Martin, A. (2007). A comparative study of zirconia and alumina supported Pt and Pt-Sn catalysts used for dehydrocyclization of n-octane. Appl. Catal. A: Gen. 333, 67-77. DOI: 10.1016/j.apcata.2007.09.003.
  • 21. Siri, G.J., Ramallo-Lópezc, J.M., Casella, M.L., Fierrod, J.L.G., Requejo, F.G. & Ferretti, O.A. (2005). XPS and EXAFS study of supported PtSn catalysts obtained by surface organometallic chemistry on metals: Application to the isobutane dehydrogenation. Appl. Catal. A: Gen. 278, 239-249. DOI: 10.1016/j.apcata.2004.10.004.
  • 22. Bocanegra, S.A., de Miguel, S.R., Borbath, I., Margitfalvi, J.L. & Scelza, O.A. (2009). Behavior of bimetallic PtSn/Al2O3 catalysts prepared by controlled surface reactions in the selective dehydrogenation of butane. J. Mol. Catal. A: Chem. 301, 52-60. DOI: 10.1016/j.molcata.2008.11.006.
  • 23. de Miguel, S.R., Bocanegra, S.A., Julieta Vilella, I.M., Guerrero-Ruiz, A. & Scelza, O.A. (2007). Characterization and catalytic performance of PtSn catalysts supported on Al2O3 and Na-doped Al2O3in n-butane dehydrogenation. Catal. Lett. 119, 5-15. DOI: 10.1007/s10562-007-9215-5.
  • 24. de Miguel, S.R., Román-Marínez, M.C., Jablonski, E.L., Fierro, J.L.G., Cazorla-Amorós, D. & Scelza, O.A. (1999). Characteri zation of bimetallic PtSn catalysts supported on purified and H2O2-functionalized carbons used for hydrogenation reactions. J. Catal. 184, 514-525. DOI: 10.1006/jcat.1999.2457.
  • 25. Coloma, F., Sepfilveda-Escribano, A., Fierro, J.L.G. & Rodriguez-Reinoso, F. (1996). Crotonalde hyde hydrogenation over bimetallic Pt-Sn catalysts supported on pregraphitized carbon black: Effect of the Sn/Pt atomic ratio. Appl. Cata l. A: Gen. 136, 231-248. DOI: 10.1016/0926-860X(95)00259-6.
  • 26. Coloma, F., Sepfilveda-Escribano, A., Fierro, J.L.G. & Rodriguez-Reinoso, F. (1996). Crotonaldehyde hydrogenation over bimetallic Pt-Sn catalysts supported on pregraphitized carbon black: Effect of the preparation method. Appl. Catal. A: Gen. 148, 63-80. DOI: 10.1016/S0926-860X(96)00218-9.
  • 27. Homs, N., Llorca, J., de la Piscina, P.R., Francisco Rodríguez- Reinoso, F., Sepúlveda-Escribano, A. & Silvestre-Albero, J. (2001). Vapour phase hydrogenation of crotonaldehyde over magnesia-supported platinum tin catalysts. Phys. Chem. Chem. Phys. 3, 1782-1788. DOI: 10.1039/b100770j.
  • 28. Vilella, I.M.J., de Miguel, S.R., de Lecea, C.S-M., Linares- Solano, Á. & Scelza, O.A. (2005). Catalytic performance in citral hydrogenation and characterization of PtSn catalysts supported on activated carbon felt and powder. Appl. Catal. A: Gen. 281, 247-258. DOI: 10.1016/j.apcata.2004.11.034.
  • 29. Vu, B.K., Song, M.B., Ahn, I.Y., Suh, Y-W., Suh, D.J., Kim, W-I., Koh, H-L., Choi, Y.G. & Shin, E.W. (2011). Pt-Sn alloy phases and coke mobility over Pt-Sn/Al2O3 and Pt-Sn/ ZnAl2O4 catalysts for propane dehydrogenation. Appl. Catal. A: Gen. 400, 25-33. DOI: 10.1016/j.apcata.2011.03.057.
  • 30. Ricardo, M., Luis, M., Aura, L. & Francisco, Z. (2005). Characterization of bifunctional PtSn/H[Al]ZSM5 catalysts: a comparison between two impregnation strategies. J. Mol. Catal. A: Chem. 228, 227-232. DOI: 10.1016/j.molcata.2004.09.036.
  • 31. Pakornphant, C., Sumaeth, C. & Johannes, S. (2004). Temperature-programmed desorption of methanol and oxidation of methanol on Pt-Sn/Al2O3 catalysts. J. Chem. Eng. 97, 161-171. DOI: 10.1016/S1385-8947(03)00178-5.
  • 32. Ruiz-Martínez, J., Sepúlveda-Escribano, A., Anderson, J.A. & Rodríguez-Reinoso, F. (2007). Infl uence of the preparation method on the catalytic behavior of PtSn/TiO2 catalysts. Catal. Today. 123, 235-244. DOI: 10.1016/j.cattod.2007.02.013.
  • 33. Luciene, S.C., Patricio, R., Gina, P., Nora, F., Carlos, L.P. & Maria do, C.R. (2001). Effect of the solvent used during preparation on the properties of Pt/Al2O3 and Pt-Sn/Al2O3 catalysts. Ind. Eng. Chem. Res. 40, 5557-5563. DOI: 10.1021/ ie000939t.
  • 34. Zhang, K., Zhang, H.T., Ma, H.F., Ying, W.Y. & Fang, D.Y. (2014). Effect of Sn addition in gas phase hydrogenation of acetic acid on alumina supported PtSn catalysts. Catal. Lett. 144, 691-701. DOI: 10.1007/s10562-014-1210-z.
  • 35. Armendáriz, H., Guzmán. A., Toledo, J.A., Llanos, M.E., Vázquez, A. & Aguilar-Ríos, G. (2001). Isopentane dehydrogen ation on Pt-Sn catalysts supported on Al-Mg-O mixed oxides: effect of Al/Mg atomic ratio. Appl. Catal. A: Gen. 211, 69-80. DOI: 10.1016/S0926-860X(00)00836-X.
  • 36. Ballarini, A.D., de Miguel, S.R., Castro, A.A. & Scelza, O.A. (2013). n-Decane dehydrogenation on Pt, PtSn and PtGe supported on pinels prepared by different methods of synthesis. Appl. Catal. A: Gen. 467, 235-245. DOI: 10.1016/j. apcata.2013.07.03.
  • 37. Margitfalvi, J.L., Tompos, A., Kolosova, I. & Valyon, J. (1998). Reaction induced selectivity improvement in the hydrogenation of crotonaldehyde over Sn-Pt/SiO2 catalysts. J. Catal. 174, 246-249. DOI: 0021-9517/98.
  • 38. Yu, C.L., Ge, Q.J., Xu, H.Y. & Li, W.Z. (2006). Effects of Ce addition on the Pt-Sn/γ-Al2O3 catalyst for propane dehydrogenation to propylene. Appl. Catal. A: Gen. 315, 58-67. DOI: 10.1016/j.apcata.2006.08.038.
  • 39. Arteaga, G.J., Anderson, J.A. & Rochester, C.H. (1999). FTIR study of CO adsor ption on coked Pt-Sn/Al2O3 catalysts. Catal. Lett. 58, 189-194. DOI: 10.1023/A: 1019023210896.
  • 40. Riguetto, B.A., Damyanova, S., Gouliev, G., Marques, C.M.P., Petrov, L. & Bueno, J.M.C. (2004). Surface behavior of alumina-supported Pt catalysts modified with cerium as revealed by X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy of CO adsorption. J. Phys. Chem. B. 108, 5349-5358. DOI: 10.1021/jp031167s.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-96741df8-60c1-4e96-a665-353c3c096dee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.