PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Hardening in Alloys and Composites and Its Examination with a Diffraction and Self-Consistent Model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of diffraction stress measurement in Al/SiC composite and in 2124T6 aluminum alloy during the in situ tensile test. The main aim of the work is to observe the stress values for different stages of tensile test for the composite after applying two types of thermal treatment and for the alloy used as a matrix in this composite, to identify the type of hardening process. The experimental results were compared against the calculations results obtained from the self-consistent model developed by Baczmański [1] - [3] to gain the information about the micromechanical properties (critical resolved shear stress τcr and hardening parameter H) of the examined materials. This comparison allowed researchers to determine the role of reinforcement in the composite as well as the impact of the heat treatment on the hardening of the material.
Rocznik
Tom
Strony
31--46
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr., wzory
Twórcy
  • Institute of Aviation, Warsaw, Poland
  • AGH-University of Science and Technology, WFiIS, Kraków, Poland
autor
  • AGH-University of Science and Technology, WFiIS, Kraków, Poland
autor
  • AGH-University of Science and Technology, WIMiIP, Kraków, Poland
  • Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
  • Karlsruhe Institute of Technology, AGW, Karlsruhe, Germany
Bibliografia
  • [1] A. Baczmański, “Stress fields in polycrystalline materials studied using diffraction and self-consistent modeling,” postdoctoral dissertation, AGH - University of Science and Technology, Kraków, 2005.
  • [2] A. Baczmański and C. Braham, “Elastoplastic properties of duplex steel determined using neutron diffraction and self-consistent model,” Acta Materialia, vol. 52, no. 5, pp. 1133–1142, Mar. 2004.
  • [3] E. Gadalińska, “Micromechanical properties and stresses in two-phase polycrystalline materials studied using diffraction and self-consistent model,” Doctoral Thesis, AGH - University of Science and Technology, Kraków, 2018.
  • [4] A. Maciejny, “Mechanizm umocnienia kompozytów,” Krzepnięcie metali i stopów. Krystalizacja i własności kompozytów odlewanych., vol. 7, pp. 335-353, 1984.
  • [5] R. J. McElroy and Z. C. Szkopiak, “Dislocation-Substructure-Strengthening and Mechanical-Thermal Treatment of Metals,” International Metallurgical Reviews, vol. 17, no. 1, pp. 175-202, Jan. 1972.
  • [6] M. Rozmus-Górnikowska, “Umocnienie wydzieleniowe stopu Al z Cu + umocnienie stali,” Kraków.
  • [7] T. W. Clyne and P. J. Withers, An Introduction to Metal Matrix Composites. Cambridge University Press, 1993.
  • [8] R. J. Arsenault and N. Shi, “Dislocation generation due to differences between the coefficients of thermal expansion,” Materials Science and Engineering, vol. 81, pp. 175-187, Aug. 1986.
  • [9] R. J. Arsenault, L. Wang, and C. R. Feng, “Strengthening of composites due to microstructural changes in the matrix,” Acta Metallurgica et Materialia, vol. 39, no. 1, pp. 47-57, Jan. 1991.
  • [10] S. B. Prabu, L. Karunamoorthy, S. Kathiresan, and B. Mohan, “Influence of stirring speed and stirring time on distribution of particles in cast metal matrix composite,” Journal of Materials Processing Technology, vol. 171, no. 2, pp. 268-273, Jan. 2006.
  • [11] K. Suryanarayanan, R. Praveen, and S. Raghuraman, “Silicon carbide reinforced aluminium metal matrix composites for aerospace applications: a literature review,” International Journal of Innovative Research in Science, Engineering and Technology, vol. 2, no. 11, pp. 6336-6344, 2013.
  • [12] S. H. Avner, Introduction to physical metallurgy. New York: McGraw-Hill, 1964.
  • [13] Y. Lakhtin and N. Weinstein, Engineering physical metallurgy. University Press of the Pacific, 2000.
  • [14] M. M. Boopathi, K. P. Arulshri, and N. Iyandurai, “Evaluation of mechanical properties of aluminium alloy 2024 reinforced with silicon carbide and fly ash hybrid metal matrix composites,” American Journal of Applied Sciences, vol. 10, no. 3, pp. 219-229, 2013.
  • [15] S. V. S. Narayana Murty, B. Nageswara Rao, and B. P. Kashyap, “On the hot working characteristics of 6061Al-SiC and 6061-Al2O3 particulate reinforced metal matrix composites,” Composites Science and Technology, vol. 63, no. 1, pp. 119-135, Jan. 2003.
  • [16] M. E. Fitzpatrick, “A study of the effects of a quench residual stress field on fatigue in an Al/SiCp metal matrix composite,” University of Cambridge, 1995.
  • [17] F. Xu, J. Zhang, Y. Deng, and X. Zhang, “Precipitation orientation effect of 2124 aluminum alloy in creep aging,” Transactions of Nonferrous Metals Society of China, vol. 24, no. 7, pp. 2067-2071, Jul. 2014.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9669cffc-408e-48a8-a114-70eee4676184
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.