PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biomateriały polimerowe w regeneracji ubytków skóry : artykuł przeglądowy

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Polymer biomaterials for skin regeneration : a review
Języki publikacji
PL EN
Abstrakty
PL
Leczenie rozległych ubytków skórnych przy pomocy syntetycznych materiałów lub z wykorzystaniem inżynierii tkankowej jest obecnie najbardziej rozwiniętą dziedziną medycyny regeneracyjnej. Pierwsze materiały stosowane w leczeniu rozległych oparzeń bazowały na materiałach naturalnych i kolagenie. Kolagen jest podstawą praktycznie wszystkich substytutów skórnych stosowanych aktualnie w leczeniu klinicznym. Jednak zauważalne jest zapotrzebowanie na inne materiały, w tym, przede wszystkim, polimery syntetyczne. Szczególnie ważną rolę w opracowywaniu nowych ulepszonych substytutów skóry odgrywają polimery resorbowalne. Bardzo ważną cechą polimerów syntetycznych jest możliwość modyfikacji ich właściwości na etapie syntezy oraz uzyskiwania odpowiedniej mikrostruktury. Niniejszy artykuł stanowi przegląd biomateriałów polimerowych stosowanych w regeneracji skóry. W artykule omówiono materiały stosowane i badane klinicznie, jak i najnowsze trendy w badaniach laboratoryjnych substytutów skóry.
EN
The treatment of extensive skin defects both with the use of synthetic materials or by tissue engineering is the most developed branch of regenerative medicine. First materials applied in the treatment of extensive burns were based on natural materials and collagen. Collagen is the basis of practically all skin substitutes applied in the clinical skin treatment. However the need for different materials, especially synthetic polymers, is noticeable. Resorbable polymers play particularly important role in the research on new improved substitutes of skin. The possibility of the modification of their properties on the stage of the synthesis and achieving suitable microstructure is a very important feature of synthetic polymers. In this review polymer biomaterials applied in the regeneration of skin are described. Materials which were already clinically tested, as well as the new trends in the laboratory investigations of substitutes of skin are presented.
Rocznik
Strony
2--9
Opis fizyczny
Bibliogr. 47 poz.
Twórcy
autor
  • Państwowa Wyższa Szkoła Zawodowa w Tarnowie, Instytut Matematyczno-Przyrodniczy, ul. Mickiewicza 8, 33-100 Tarnów
autor
  • Akademia Górniczo-Hutnicza, Wydział Inżynierii Materiałowej i Ceramiki, Katedra Biomateriałów, al. Mickiewicza 30, 30-059 Kraków
  • Państwowa Wyższa Szkoła Zawodowa w Tarnowie, Instytut Politechniczny, ul. Mickiewicza 8, 33-100 Tarnów
Bibliografia
  • [1] Burke J.F., Yannas I.V., Quinby W.C. Jr, Bondoc C.C., Jung W.K.: Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Annals of Surgery 194(4) (1981) 413-28.
  • [2] Pham C., Greenwood J., Cleland H., Woodruff P., Maddern G.: Bioengineered skin substitutes for the management of burns: A systematic review. Burns 33 (2007) 946-957.
  • [3] Svensson A., Nicklasson E., Harrah T., Panilaitis B., Kaplan D.L., Brittberg M., Gatenhold P.: Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26 (2005) 419-431.
  • [4] Flasza M., Kemp P., Shering D., Qiao J., Marshall D., Bokta A., Johnson P.A.: Development and manufacture of an investigational human living dermal equivalent (ICX-SKN). Regenerative Medicine 2(6) (2007) 903-918.
  • [5] Pietrucha K., Banaś M.: Diffusive properties of hybrid collagen derivative hydrogels for medical applications, Hybrid Materials 2009. First International Conference on Multifunctional, Hybrid and Nanomaterials.
  • [6] Czaja W., Krystynowicz A., Bielecki S., Brown R.M. Jr.: Microbial cellulose – the natural power to heal wounds. Biomaterials 27 (2006) 145-151.
  • [7] Sionkowska A.: Effects of solar radiation on collagen and chitosan films. Journal of Photochemistry and Photobiology B: Biology 82 (2006) 9-15.
  • [8] http://wyborcza.pl/1,76842,4901804.html
  • [9] http://www.pulsmedycyny.com.pl/
  • [10] http://szczecin.gazeta.pl/szczecin/1,34959,4024867.html
  • [11] Fratianne R., Papay F., Housini I., Lang C., Schafer I.A.: Keratinocyte allografts accelerate healing of split-thickness donor sites: applications for improved treatment of burns. J. Burn Care Rehabil. 14(2 Pt 1) (1993) 148-154.
  • [12] Minuth W.W., Denk L., Glashauser A.: A modular culture system for the generation of multiple specialized tissues. Biomaterials 31 (2010) 2945-2954.
  • [13] Metcalfe A. D., Ferguson M.W.J.: Bioengineering skin using mechanisms of regeneration and repair. Biomaterials 28 (2007) 5100-5113.
  • [14] Rheinwald J.G., Green H.: Serial cultivation of human epidermal keratinocytes: the cell formation of keratinizing colonies from single cells. Cell 6 (1975) 331-344.
  • [15] Hata K.: Current issues regarding skin substitutes using living cells as industrial materials. Journal of Artificial Organs 10 (2007) 129-132.
  • [16] Boyce S.T.: Design principles for composition and performance of cultured skin substitutes. Burns 27 (2001) 523-533.
  • [17] Ramos-E-Silva M., Ribeiro de Castro M.C.: New dressings, including tissue-engineered living skin. Clinics in Dermatology 20 (2002) 715-723.
  • [18] Leffler M., Horch R.E., Dragu A., Bach A.D.: The use of the artificial dermis (Integra®) in combination with vacuum assisted closure for reconstruction of an extensive burn scar – A case report. Journal of Plastic, Reconstructive and Aesthetic Surgery 63 (2010) e32-e35.
  • [19] Hansen S.L., Voigt D.W., Wiebelhaus P., Paul C.N.: Using skin replacement products to treat burns and wounds. Advances in Skin & Wound Care 14(1) (2001) 37-44.
  • [20] Spielvogel R.L.: A histological study of Dermagraft- TC in pateients’burn wounds. Journal of Burn Care & Rehabilitation 18(1 Pt 2) (1997) 16-18.
  • [21] Nair L.S., Laurencin C.T.: Biodegradable polymers as biomaterials. Progress in Polymer Science 32 (2007) 762-798.
  • [22] Chin C.D., Khanna K., Sia S.K.: A microfabricated porous collagen-based scaffold as prototype for skin substitutes. Biomedical Microdevices 10 (2008) 459-467.
  • [23] Buttafoco L., Kolkman N.G., Engbers-Buijtenhuijs P., Poot A.A., Dijkstra P.J., Vermes I., Feijen J.: Electrospinning of collagen and elastin for tissue engineering applications. Biomaterials 27 (2006) 724-734.
  • [24] Daamen W.F., Veerkamp J.H., van Hest J.C.M., van Kuppevelt T.H.: Elastin as a biomaterial for tissue engineering. Biomaterials 28 (2007) 4378-4398.
  • [25] Kim T.G., Chung H.J., Park T.G.: Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles. Acta Biomaterialia 4 (2008) 1611-1619.
  • [26] Scuderi N., Onesti M.G., Bistoni G., Ceccarelli S., Rotolo S., Angeloni A., Marchese C.: The clinical application of autologous bioengineered skin based on a hyaluronic acid scaffold. Biomaterials 29 (2008) 1620-1629.
  • [27] Tu J., Bolla S., Barr J., Miedema J., Li X., Jasti B.: Alginate microparticles prepared by spray-coagulation method: Preparation, drug loading and release characterization. International Journal of Pharmaceutics 303 (2005) 171-181.
  • [28] Musiał W., Kubis A.: Preliminary assessment of alginic acid as a factor buffering trethanolamine interacting with artificial skin sebum. European Journal of Pharmaceutics and Biopharmaceutics 55 (2003) 237-240.
  • [29] Chen C.C., Chueh J.Y., Tseng H., Huang H.M., Lee S.Y.: Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials 24 (2003) 1167-1173.
  • [30] Sarazin P., Roy X., Favis B.D.: Controlled preparation and properties of porous poly(L-lactide) obtained from a co-continuous blend of two biodegradable polymers. Biomaterials 25 (2004) 5965-5978.
  • [31] Kumbar S.G., Nukavarapu S.P., Roshan J., Nair L.S., Laurencin C.T.: Electrospun poly(lactic acid-co-glycolic acid) scaffolds for skin tissue engineering. Biomaterials 29 (2008) 4100-4107.
  • [32] Penco M., Sartore L., Bignotti F., D’Antone S., Landro L.D.: Thermal properties of a new class of block copolymers based on segments of poly(D,L-lactic-glycolic acid) and poly(ε-caprolactone). European Polymer Journal 36 (2000) 901-908.
  • [33] Holy C.E., Cheng C., Davies J.E., Shoichet M.S.: Optimizing the sterilization of PLGA scaffolds for use in tissue engineering. Biomaterials 22 (2001) 25-31.
  • [34] Oh S.H., Park I.K., Kim J.M., Lee J.H.: In vitro and in vivo characteristics of PCL scaffold with pore size gradient fabricated by a centrifugation method. Biomaterials 28 (2007) 1664-1671.
  • [35] Kwon I.K., Park K.D., Choi S.W., Lee S.H., Lee E.B., Na J.S., Kim S.H., Kim Y.H.: Fibroblast culture on surface-modified poly(glicolide-co-epsilon-caprolactone) scaffold for soft tissue regeneration. Journal of Biomaterials Science, Polymer Edition 12(10) (2001) 1147-1160.
  • [36] Lee S.H., Kim B.S., Kim S.H., Choi S.W., Jeong S.I., Kwon I.K., Kang S.W., Nikolovski J., Mooney D.J., Han Y.K., Kim Y.H.: Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering. Journal of Biomedical Materials Research Part A. 66(1) (2003) 29-37.
  • [37] Sin D.C., Miao X., Liu G., Wei F., Chadwick G., Yan C., Friis T.: Polyurethane scaffold prepared by solvent casting/particulate leaching (SCPL) combined with centrifugation. Materials Science and Engineering: C 30 (2010) 78-85.
  • [38] Walińska K., Iwan A., Gorna K., Gogolewski S.: The use of long-chain plant polyprenols as a means to modify the biological properties of new biodegradable polyurethane scaffolds for engineering. A pilot study. Journal of Materials Science: Materials in Medicine 19 (2008) 129-135.
  • [39] Melnig V., Apostu M.O., Tura V., Ciobanu C.: Optimization of polyurethane membranes. Morphology and structure studies. Journal of Membrane Science 267 (2005) 58-67.
  • [40] Gorna K., Gogolewski S.: The effect of gamma radiation on olecular stability and mechanical properties of biodegradable polyurethanes for medical applications. Polymer Degradation and Stability 79 (2003) 465-474.
  • [41] Ghalbzouri A.E., Lamme E.N., van Blitterswijk C., Koopman J., Ponec M.: The use of PEGT/PBT as a dermal scaffold for skin tissue engineering. Biomaterials 25 (2004) 2987-2996.
  • [42] Ying T.H., Ishii D., Mahara A., Murakami S., Yamaoka T., Sudesh K., Samian R., Fujita M., Maeda M., Iwata T.: Scaffolds from electrospun polyhydroxyalkanoate copolymers: Fabrication, characterization, biabsorption and tissue response. Biomaterials 29 (2008) 1307-1317.
  • [43] Misra S.K., Ansari T.I., Valappil S.P., Mohn D., Philip S.E., Stark W.J., Roy I., Knowles J.C., Salih V., Boccaccini A.R.: Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications. Biomaterials 31 (2010) 2806-2815.
  • [44] Li H., Chang J.: Fabrication and characterization of bioactive wollastonite/PHBV composite scaffolds. Biomaterials 25 (2004) 5473-5480.
  • [45] Liu B., Liu Y., Lewis A.K., Shen W.: Modularly assembled porous cell-laden hydrogels. Biomaterials 31 (2010) 4918-4925.
  • [46] Helary C., Bataille I., Abed A., Illoul C., Anglo A., Louedec L., Letourneur D., Meddahi-Pelle A., Giraud-Guille M.M.: Concentrated collagen hydrogels as dermal substitutes. Biomaterials 31 (2010) 481-490.
  • [47] Guiseppi-Elie A.: Electroconductive hydrogels: Synthesis, characterization and biomedical applications. Biomaterials 31 (2010) 2701-2716.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-966578d0-7ee5-4a78-8288-3dbf7ab64619
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.