PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrooxidation of Coconut Oil in Alkaline Electrolyte

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Providing more and more energy is an essential task of today's energetic industry. In the last few years, addition to traditional methods of energy production, alternative energy sources have been fast developing. One of the devices that can use these sources is fuel cell. The fuel cells can be a power source of future mainly due to their high efficiency, low influence on environment and possibility of powering with different fuels. Most often fuel cells are powered by hydrogen. However, problems with the problems with its cheap production and storage are the reason for the search of new fuels for fuel cells. But it must be a fuel that will provide zero or low emission level. One of these fuels can be vegetable oil. The paper presents measurements of electrooxidation of coconut oil emulsion on a smooth platinum electrode in an aqueous solution of KOH. Electrochemical measurements were performed in a glass cell with AMEL System 5000 potentiostat. The obtained maximum current density is equal 25 mA/cm2. So, a fundamental possibility of using the coconut oil as fuel for fuel cell. But is necessary to keep the temperature of process above 303K.
Rocznik
Strony
173--179
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
  • Department of Process Engineering, University of Opole, Dmowskiego Str. 7-9, 45-365 Opole, Poland
  • Department of Process Engineering, University of Opole, Dmowskiego Str. 7-9, 45-365 Opole, Poland
Bibliografia
  • 1. Abeysundara D.C., Weerakoon C., Lucas J.R., Gunatunga K.A.I., Obadagee K.C. 2001. Coconut Oil As An Alternative To Transformer Oil. ERU Symposium.
  • 2. Alamu O.J., Dehinbo O., Sulaiman A.O. 2010. Production and Testing of Coconut Oil Biodiesel Fuel and its Blend. Leonardo Journal of Sciences, 16, 95–104.
  • 3. Al-Widyan M.I., Al-Shyoukh A.O. 2002. Experimental evaluation of the transesterification of waste palm oil into biodiesel. Bioresour Technol., 85(3), 253–256.
  • 4. Bockris J. O’M., Reddy A.K.N. 2000. Modern Electrochemistry. New York. Kulwer Academic/ Plenum Publishers.
  • 5. Hamnett A. 1997. Mechanism and electrocatalysis in the direct methanol fuel cell. Catalysis Today, 38(4), 445–457.
  • 6. Holtzer M., Staronka A. 2000. Physical Chemistry, Introduction (in Polish). Cracow. Publishing house AGH.
  • 7. Hoogers G. 2003. Fuel Cell Technology Handbook. Boca Raton. CRC Press.
  • 8. Ignatov O.V., Shalunova Iu.V., Panchenko L.V., Turkovskaia O.V., Ptichkina N.M. 1995. Degradation of Syntanol DS-10 by bacteria immobilized in polysaccharide gels (in Russian). Prikl Biokhim Mikrobiol., 31(2) 220–223.
  • 9. James T.K., Rahman A. 2005. Efficacy of several organic herbicides and glyphosate formulations under simulated rainfall. New Zealand Plant Protection. 58, 157–163.
  • 10. Kravchenko A.V., Rudnitskii A.G., Nesterenko A.F., Kublanovskii V.S. 1994. Degradation of Syntanol DS-10 promoted by energy transfer reactions. Ukrainian Chemistry Journal C/C of Ukrainskii Khimicheskii Zhurnal, 60 (11) 11–13.
  • 11. Lang X., Dalai A.K., Bakhshi N.N., Reaney M.J., Hert P.B.. 2001, Preparation and characterization of biodiesels from various biooils. Bioresces Technology, 80, 53–62.
  • 12. Larminie J., Dicks A. 2003. Fuel cell system explained. John Wiley & Sons Ltd.
  • 13. Marina A.M., Che Man Y.B., Amin I. 2009. Virgin coconut oil: emerging functional food oil. Trends Food Sci Technol, 20(10), 481–487.
  • 14. Marina A.M., Che Man Y.B., Nazimah A.H. 2009. Chemical properties of virgin coconut oil. J. Am. Oil Chem. Soc., 86, 301–307.
  • 15. Milewski J., Lewandowski J. 2013. Biofuels as fuels for high temperature fuel cells. Journal of Power Technologies, 93(5), 347–353.
  • 16. Milewski J., Michalska K. and Kacprzak A. 2013. Dairy biogas as fuel for a molten carbonate fuel cell-initial study. Journal of Power Technologies 93(3), 161–168.
  • 17. Machacon H.T.C., Matsumoto Y., Ohkawara C., Shiga S., Karasawa T., Nakamura H. 2001. The effect of coconut oil and diesel fuel blends on diesel engine performance and exhaust emissions. JSAE Review, 22(3), 349–355. DOI: 10.1016/ S0389–4304(01)00111–4
  • 18. O’Hayre R., Cha S-W., Colella W., Prinz F.B. 2005. Fuel Cell Fundamentals. Hoboken. John Wiley & Sons.
  • 19. Paraska O., Karvan S. 2010. Mathematical modelling in scientific researches of chemical technology processes. Technical Transactions. Mechanics. Cracow University of Technology Press, 107(2M), 203–210.
  • 20. Ross D.K. 2006. Hydrogen storage: The major technological barrier to the development of hydrogen fuel cell cars. Vacuum 80 (10), 1084–1089.
  • 21. Sakharov Iu.I., Rastiannikov E.G., Verbitskaia G.M. Tarasova L.N. 1975. Washability of Syntanol DS-10 from kitchen utensils (in Russian). Vopr Pitan. (4), 75–77.
  • 22. Shijna K., Shirwaikar A., Shirwaikar A. 2015. Coconut Oil–A Review of Potential Applications Hygeia: Journal for Drugs and Medicines, 34–41. DOI:10.15254/H.J.D.Med.7.2015.149
  • 23. Stolten D. 2010. Hydrogen and fuel cells. Fundamentals. Technologies and Applications. Weinheim. Wiley-VCH.
  • 24. Survila A., Mockus Z., Kanapeckaitė S., Samulevičienė M. 2005. Effect of Syntanol DS-10 and halides on tin(II) reduction kinetics. Electrochimica Acta, 50 (14), 2879–2885.
  • 25. Twigg M.V. 1989. Catalyst handbook. London. Wolfe Publishing Ltd.
  • 26. Włodarczyk P.P., Włodarczyk B. 2013. Powering fuel cell with crude oil. Journal of Power Technologies, 93(5), 394–396.
  • 27. Włodarczyk P. P., Włodarczyk B. 2015a. Electrooxidation of canola oil with Pt catalyst in acid electrolyte. Archives of Waste Management and Environmental Protection, 17(2), 18–28.
  • 28. Włodarczyk P.P., Włodarczyk B. 2015b. Possibility of fuel cell powering with grape seed oil. QUAESTI-Virtual Multidisciplinary Conference, 3 (1), 300–304. DOI:10.18638/quaesti.2015.3.1.210
  • 29. Włodarczyk P.P., Włodarczyk B. 2016a. Electrooxidation of sunflower oil in acid electrolyte. New Trends in Management and Production Engineering – Regional, Cross-border and Global Perspectives. Aachen. Shaker Verlag, 188–198.
  • 30. Włodarczyk P.P., Włodarczyk B. 2016b. Canola oil electrooxidation in an aqueous solution of KOH – Possibility of alkaline fuel cell powering with canola oil. Journal of Power Technologies, 96 (6), 459–462.
  • 31. Włodarczyk P.P., Włodarczyk B. 2016c. Electrooxidation of diesel fuel in alkaline electrolyte. Infrastructure and Ecology of Rural Areas, 4 (1), 1071–1080. DOI:http://dx.medra.org/10.14597/infraeco.2016.4.1.078.
  • 32. Włodarczyk P.P., Włodarczyk B., 2016d. Canola oil electrooxidation in aqueous solution NaCl (in Polish). Diagnosing of the Environment Condition, Research Methods – Forecasts, Works of Ecology Commission and Environmental Protection, Scientific Society of Bydgoszcz, 10, 205–216.
  • 33. Włodarczyk P.P., Włodarczyk B. 2016e. Direct electricity production from Avgas UL91 fuel. Civil engineering, 4th SCIECONF 2016, DOI:10.18638/ scieconf.2016.4.1.382.
  • 34. Włodarczyk P.P., Włodarczyk B., 2017. Electrooxidation of used synthetic engine oil in aqueous solution of H2SO4 (in Polish), Ecological Engineering, 18 (1) 65–70. DOI:10.12912/23920629/66985
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-966444b8-5f1f-46e3-bd7f-88a298c47b60
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.