Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we propose a new confidence interval (CI) for the population mean based on robust estimators, which involves the application of the winsorized modified one-step M-estimator (WMOM) and winsorized standard deviation (WSD). The proposed method is modified for the Student’s t confidence interval CI under the non-normal distribution. The performances of the proposed confidence interval were evaluated via a Monte-Carlo simulation study by considering the coverage ratio (CR) and the average length (AL) as performance criteria. The simulation study results show the superior performance of the proposed confidence interval (CI) over the classical parametric Student’s t for data from a non-normal distribution. Two real data sets were analyzed, and the results agree to some extent with those of the simulation study. The results confirm the suitability of the proposed CI estimator for both normally and non-normally distributed data.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1--14
Opis fizyczny
Bibliogr. 38 poz., tab., wykr.
Twórcy
autor
- Imam Abdulrahman Bin Faisal University, College of Administrative Management, Department of Quantitative Methods, Dammam, Saudi Arabia
- Mathematics, The Hashemite University, Zarqa 13133, P.O. Box 330127, Jordan
Bibliografia
- Abu-Shawiesh, M.O.A., Banik, B. and Kibria, B.M.G. (2018). Confidence Intervals are based on absolute deviation for the population mean of a positively skewed distribution. International Journal of Computational and Theoretical Statistics, 5(1), 1–13.
- Abu-Shawiesh, M.O.A. and Saghir, A. (2019). Robust Confidence Intervals for the population mean alternatives to Student-t CI. Journal of Modern Applied Statistical Methods, 18(1), 1–21.
- Abu-Shawiesh M., Sinsomboonthong J., Kibria B. (2022). A Modified Robust Confidence Interval for the Population Mean of Distribution based on Deciles. Statistic in Transition, 23(1), 109–128. DOI: 10.21307/stattrans2022-007.
- Akyuz, H.E., and Abu-Shawiesh, M.O.A. (2020). A robust Confidence Interval based on modified trimmed standard deviation for the mean of positively skewed populations. Electronic Journal of Applied Statistical Analysis, 13(1), 164–182.
- Aslam M., Khan N., Azam M., Jun C.H., (2014). “Designing of a new monitoring t-chart using repetitive sampling.” Inf. Sci, 269, 210–216. DOI: 10.1016/j.ins.2014.01.022.
- Azam M., Aslam M., Jun C.H., (2017). AEWMA Control chart for the exponential distribution using repetitive sampling plan.” Operations Research and Decisions, 27(2), 5–19. DOI: 10.5277/ord170201.
- Badrinath, S.G. & Chatterjee, S. (1988), “On Measuring Skewness and Elongation in Common Stock Return Distributions: The Case of the Market Index.” Business, 61(4), 451–472.
- Badrinath, S.G. & Chatterjee, S. (1991). “A Data-Analytic Look at Skewness and Elongation in Common-StockReturn Distributions.” Business and Economic Statistics, 9(6), 223–233.
- Boos, D., and Hughes-Oliver, J. (2000). How large does n have to be for Z and t intervals. The American Statistician, 54(2), 121–128.
- Brooks, A. (1985). Heat treating shows why SPC is no curve-all for manufacturer’s production Engineering. 32(6), 66–77.
- Cain, M.K., Zhang, Z., and Yuan, K.H. (2016). Univariate and multivariate skewness and kurtosis for measuring nonnormality: Prevalence, influence and estimation. Behavior Research Methods, 49(2), 1716–1735.
- Chambers R., Philip K. and Marie C. (2000). Winsorization for Identifying and Treating Outliers in Business Survey. https://www.researchgate.net/publication/307632859_Winsorization_for_Identifying_and_Treating_Outliers_in_Business_Surveys.
- Croux C. and Rousseeuw P.J. (1992). Time-efficient algorithms for two highly robust estimators of scale. Vol. 1: Proceedings of the 10th Symposium on Computational Statistics, 411–428.
- Ghosh, S., and Polansky, A.M. (2016). New bootstrap CI for means of positively skewed distributions. Communications in Statistics-Theory and Methods, 45(23), 6915–6927.
- Haddad F. (2018). Improvement of the Hotelling’s T 2 Charts Using Robust Location Winsorized Modified One Step M-Estimator (WMOM). Journal of Mathematics (ISSN 1016-2526), 50(1), 97–112.
- Hoaglin, D.C. (1985). “Summarizing Shape Numerically: The g-and-h Distributions.” Chapter 11 in Exploring Data Tables Trends, and Shapes. Eds. Hoaglin, Mosteller, and Tukey. New York, NY: John Willey.
- Huber, P.J. (1981). Robust statistics, John Wiley, New York.
- Ialongo C. (2019). Confidence Interval of percentiles in skewed distribution: The importance of the actual coverage probability in practical quality applications for laboratory medicine. Electronic supplementary material. 29(3).
- Johnson, N. J. (1978). Modified t-tests and Confidence Intervals for asymmetrical population. Journal of the American Statistical Association, 73(363), 536-544.
- Jonathan W., White J., Riethof M., Kushnir I. (1960). Estimation of microcrystalline wax in beeswax. J. Assoc. Off. Anal. Chem., 43(4), 781–790.
- Large T.R., Royals H.E Connor L.L. (1993). Influence of Water Chemistry on Mercury Concentration in Largemouth Bass from Florida Lakes. Transactions of the American Fishers Society. 122, 74–84.
- Luh, W., and Guo, J. (2001). Transformation works for non-normality. On one-sample transformation trimmed t methods. British Journal of Mathematical and Statistical Psychology, 54(2), 227–236.
- Mcdonald, J.H. (2014). Handbook of Biological Statistics. 3 rd ed., Sparky House Publishing, Baltimore, Maryland.
- Miller, J.M. and Penfield, R.D. (2005). Using the score method to construct asymmetric Confidence Intervals: An SAS program for content validation in scale development. Behavior Research Methods, 37(3), 450–452.
- Mills, T.C. (1995). Modeling Skewness and Kurtosis in the London Stock Exchange FT-SE Index Return Distributions. Statistician, 44(3), 323–332.
- Mudelsee, M., and Alkio, M. (2007). Quantifying effects in two-sample environmental experiments using bootstrap Confidence Intervals. Environmental Modelling and Software, 22(1), 84–96.
- Ochuko T.K., Abdullah S., Zain Z., Yahaya S.S.S. (2016). Winsorized Modified One Step M-Estimator as a Measure of the Central Tendency in the Alexander-Govern Test. ComTech, 7(3), 233–244.
- Panichkitkosolkul W. (2015). Confidence interval for the coefficient of variation in a normal distribution with a known population mean after a preliminary t- test. KMITL Sci. Tech. J., 15(1), 34–46.
- Pek, J., Wong, A. and Wong, O. (2017) Confidence Intervals for the Mean of Non-Normal Distribution: Transform or Not to Transform. Open. Journal of Statistics, 7, 405–421.
- Rousseeuw, P.J., & Croux, C. (1993). Alternatives to the Median Absolute Deviation. [Theory and Methods]. American Statistical Association, 88(424).
- Santiago E. and Smith J., (2013). Control charts based on the exponential distribution: adapting runs rules for the t chart. Qual. Eng., 25(2), 85–96.
- Sindhumol, M.R., Sindhumol, M.M., and Gallo, M. (2016). Robust control charts based on modified trimmed standard deviation and Gini’s mean difference. Journal of Applied Quantitative Methods, 11(3), 18–30.
- Sinsomboonthong, J., Abu-Shawiesh, M.O.A., and Kibria, B.M.G. (2020). Performance of robust CIs for estimating population mean under both non-normality and in the presence of outliers. Advances in Science, Technology and Engineering Systems Journal, Vol. 5(3), 442–449.
- Student (1908). The probable error of a mean. Biometrika, 6(1), 1–25.
- Syed-Yahaya S.S., Othman A.R., Keselman H.J. (2006). Comparing the typical score across independent groups based on different criteria for trimming. Metodoloski zvezki, 3(1), 49–62.
- Visalakshi J. and Jeyaseelan A.L. (2013). Confidence Interval for skewed distribution in the outcome of change or difference between methods. Journal of clinical of epidemiology and global health. 117–120.
- Yanagihara, H., and Yuan, K.H. (2005). Four improved statistics for contrasting means by correcting skewness and kurtosis. British Journal of Mathematical and Statistical Psychology, 58(2), 209–237.
- Yuen K.K. (1971). A Note on Winsorized t. Journal of the Royal Statistical Society. Series C (Applied Statistics), 20(3), pp. 297–304.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9663d028-1b7e-4659-a9a8-775094c600ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.