PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finite element model and test results for punching shear failure of RC slabs

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The nonlinear finite element analysis of pin-supported reinforced concrete slabs of moderate thickness is the main subject of this paper. This is an important issue of the mechanics of concrete structures. Thus, a nonlinear FE analysis of RC slab models subjected to punching shear was initiated and the comparison of the numerical and test results was made. The prediction engine of the crack pattern due to bending and extension is incorporated in the Mindlin-type (moderately thick) slab model together with other nonlinear features. This is in order to formulate an alternative model of RC slab in relation to the layered models or fully three-dimensional models. New formulas were applied for 3D constitutive relationships for concrete and for tension stiffening effect. Prediction of punching shear was facilitated by Podgórski’s failure criterion for concrete. On the one hand, a considerable advantage of the proposed approach is a relatively low numerical effort in comparison with the existing models, while on the other hand the applied model clearly describes the physical behaviour of a real slab. A supporting test programme for validation was run. Three RC slabs with a system of double-headed studs as the reinforcement against punching were tested by the authors in ITB Strength Tests Laboratory. The results for the units constructed as square slabs with a central short column subjected to full-scale tests were initially compared with assessments based on standard provisions and technical approvals. As a result of this approach, the overall prediction of the nonlinear behaviour of the test model, including the model of shear failure, is in accordance with the experimental data.
Rocznik
Strony
80--95
Opis fizyczny
Bibliogr. 30 poz., fot., rys., wykr.
Twórcy
  • Instytut Techniki Budowlanej, Filtrowa 1, 00‑611 Warsaw, Poland
  • Instytut Techniki Budowlanej, Filtrowa 1, 00‑611 Warsaw, Poland
Bibliografia
  • [1] Abbasi MSA, Baluch MH, Azad AK, Abdel Rahman HH. Nonlinear finite element modelling of punching in reinforced concrete slabs. In: Proceedings of the 2nd International Conference on Computer Aided Analysis and Design of Concrete Structures, Zell am See, 4–6 April 1990, pp. 279–290.
  • [2] Polak MA. Shell finite element analysis of RC plates supported on columns for punching shear and flexure. Int J Comput Aided Eng Softw. 2005;22(4):409–28.
  • [3] Guan H, Polak MA. Finite element studies of reinforced concrete slab-edge column connections with openings. Can J Civil Eng. 2007;34:952–65.
  • [4] Guan H, Loo YC. Flexural and shear failure analysis of reinforced concrete slabs and flat plates. Adv Struct Eng. 1997;1(1):71–85.
  • [5] Wosatko A, Pamin J, Polak MA, Putanowicz R, Winnicki A. Simulation of fracture in RC slab-column connection strengthened against punching shear, Czasopismo Techniczne. Kraków: Wydawnictwo Politechniki Krakowskiej; 2008. p. 183–93.
  • [6] Wosatko A, Pamin J, Polak MA. Application of damage–plasticity models in finite element analysis of punching shear. Comput Struct. 2015;151:73–85.
  • [7] Genikomsou AS, Polak MA. Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS. Eng Struct. 2015;98(9):38–48.
  • [8] Menetrey P, Willam K. Punching shear in reinforced concrete: localized process. In: EURO-C-Computational Modelling of Concrete Structures, Balkema, Rotterdam, pp. 867–876. 1998.
  • [9] Menetrey P. Synthesis of punching failure in reinforced concrete. Cement Concr Compos. 2002;24(6):497–507.
  • [10] Vocke H. Zum Durchstanzen von Flachdecken im Bereich von Rand- und Eckstützen, Doktors Dissert., Fakultät für Bauingenieur-und Vermessungswesen der Univ. Stuttgart. 2002.
  • [11] Lewiński PM, Wojewódzki W. Integrated finite element model for reinforced concrete slabs. J Struct Eng. 1991;117(4):1017–38.
  • [12] Lewiński PM, Więch PP. Analytical model and experimental research of punching shear in RC slabs. In: 7th AMCM International Conference, Kraków, 13–15 June 2011, pp. 225–226.
  • [13] Kotsovos MD, Pavlović MN. Structural concrete. Finite-element analysis for limit-state design. London: Thomas Telford Services Ltd.; 1995. p. 550.
  • [14] Kotsovos MD. A generalised constitutive model of concrete based on fundamental material properties, A Thesis for habilitation at IPPT PAN (Warsaw), Civil Engineering Department, Imperial College London. 1980.
  • [15] Kupfer HB, Hilsdorf HK, Rüsch H. Behavior of concrete under biaxial stresses. ACI J. 1969;66(8):656–66.
  • [16] EN 1992-1-1:2004 Eurocode 2: Design of concrete structures-Part 1-1: general rules and rules for buildings.
  • [17] Podgórski J. Limit state condition and the dissipation function for isotropic materials. Arch Mech. 1984;36(3):323–42.
  • [18] Eligehausen R, Hegger J, Beutel R, Vocke H. Zum Tragverhalten von Flachdecken mit Dübelleisten oder Doppelkopfankern im Auflagerbereich. Bauingenieur. 1999;74:202–9.
  • [19] Beutel RRK. Durchstanzen schubbewehrter Flachdecken im Bereich von Innenstiitzen, Doktors Dissert. Aachen: Fakultät für Bauingenieurwesen der R.-W. Techn. Hochschule; 2002.
  • [20] Polak MA, El-Salakawy E, Hammill NL. Shear reinforcement for concrete flat slabs. ACI Spec Publ. 2005;232:75–96.
  • [21] Starosolski W, Pająk Z, Jasiński R, Drobiec Ł. Punching shear tests of RC slabs reinforced with studs in support zones (in Polish). Inżynieria i Budownictwo. 2001;2:101–6.
  • [22] Jasiński R, Kupczyk R, Starosolski W, Wieczorek M. Research of slabs-columns connections in the failure stage. Inżynieria i Budownictwo. 2009;11:595–600 (in Polish).
  • [23] Hulimka J. Support zone of RC flat floor of increased punching shear capacity. Gliwice: Monografia, Wydawnictwo Politechniki Śląskiej; 2009 (in Polish).
  • [24] Urban TS. Punching in concrete: selected problems (in Polish), Zeszyty Naukowe, Nr 959. Łódź: Wydawnictwo Politechniki Łódzkiej; 2005.
  • [25] Lewiński PM. Nonlinear analysis of axisymmetric RC tanks and their interaction with subsoil. In: Proceedings of 2nd International Scientific Conference Analytical Models and New Concepts in Mechanics of Concrete Structures, Łódź, pp. 405–410, 12–14 1996 June.
  • [26] Menetrey P, Willam K. A triaxial failure criterion for concrete and its generalization. ACI Struct J. 1995;92-S30:311–8.
  • [27] Podgórski J. Prediction the direction of crack propagation in composites with irregular structure. In: CMM-2013-Computer Methods in Mechanics, Poznań, 27–31 August 2013.
  • [28] Zisopoulos PM, Kotsovos MD, Pavlovic MN. Deformational behaviour of concrete specimens in uniaxial compression under different boundary conditions. Cem Concr Res. 2000;30(1):153–9.
  • [29] Floegl H, Mang HA. Tension stiffening concept based on bond slip. J Struct Div Proc ASCE. 1982;108(12):2681–701.
  • [30] Hecht F, Pironneau O, Ohtsuka K. FreeFem++ manual. Paris: Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie; 2006.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-965e6d10-f42c-48d6-b6d8-f4522afb3253
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.