Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the present paper, we solve the non-linear Benjamin-Bona-Mahony, modified Camassa-Holm, and Degasperis-Procesi equations using an iterative method introduced by Daftardar-Gejji and Jafari. Results are compared with those obtained by other iterative methods such as the Adomian decomposition method and homotopy perturbation method. It is observed that the proposed method is computationally inexpensive and yields more accurate solutions than the Adomian decomposition method and the homotopy perturbation method.
Słowa kluczowe
Rocznik
Tom
Strony
59--72
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
- Department of Mathematics, National Defence Academy Khadakwasla, Pune-411023, India
Bibliografia
- [1] Bazighifan, O., Ahmad, H., & Yao, S.-W. (2020). New oscillation criteria for advanced differential equations of fourth order. Mathematics, 8, 5, 728.
- [2] Kumar, M., & Prasad, U. (2022). Recent development of adomian decomposition method for ordinary and partial differential equations. International Journal of Applied and Computational Mathematics, 8, 2, 1-25.
- [3] He, J.-H. (1999). Homotopy perturbation technique. Computer Methods in Applied Mechanics and Engineering, 178, 3, 257-262.
- [4] Ali, M., Alquran, M., & Mohammad, M. (2012). Solitonic solutions for homogeneous KdV systems by homotopy analysis method. Journal of Applied Mathematics, 2012
- [5] Daftardar-Gejji, V., & Jafari, H. (2006). An iterative method for solving nonlinear functional equations. Journal of Mathematical Analysis and Applications, 316, 2, 753-763.
- [6] Ahmad, H., Khan, T.A., Stanimirovic, P.S., & Ahmad, I. (2020). Modified variational iteration technique for the numerical solution of fifth order KdV-type equations. Journal of Applied and Computational Mechanics, 6, Special Issue, 1220-1227.
- [7] Jaradat, I., & Alquran, M. (2022). A variety of physical structures to the generalized equal-width equation derived from Wazwaz-Benjamin-Bona-Mahony model. Journal of Ocean Engineering and Science, 7, 3, 244-247.
- [8] Ahmad, I., Ahmad, H., Inc, M., Yao, S.-W., & Almohsen, B. (2020). Application of local meshless method for the solution of two term time fractional-order multi-dimensional PDE arising in heat and mass transfer. Thermal Science, 24, no. Suppl. 1, 95-105.
- [9] Ahmad, H., Alam, M.N., & Omri, M. (2021). New computational results for a prototype of an excitable system. Results in Physics, 28, 104666.
- [10] Akbar, M.A., Akinyemi, L., Yao, S.-W., Jhangeer, A., Rezazadeh, H., Khater, M.M., Ahmad, H., & Inc, M. (2021). Soliton solutions to the Boussinesq equation through sine-Gordon method and Kudryashov method. Results in Physics, 25, 104228.
- [11] Kayum, Abdul M., Akbar, Ali M., & Osman, M. (2022). Stable soliton solutions to the shallow water waves and ion-acoustic waves in a plasma. Waves in Random and Complex Media, 32, 4, 1672-1693.
- [12] Tian, S.-F. (2020). Lie symmetry analysis, conservation laws and solitary wave solutions to a fourth-order nonlinear generalized Boussinesq water wave equation. Applied Mathematics Letters, 100, 106056.
- [13] Ma, Y.-L., Wazwaz, A.-M., & Li, B.-Q. (2021). A new (3+1)-dimensional Kadomtsev-Petviashvili equation and its integrability, multiple-solitons, breathers and lump waves. Mathematics and Computers in Simulation, 187, 505-519.
- [14] Galaktionov, V.A., & Svirshchevskii, S.R. (2006). Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics. Chapman and Hall/CRC.
- [15] Li, B.-Q., & Ma, Y.-L. (2020). Extended generalized darboux transformation to hybrid rogue wave and breather solutions for a nonlinear Schr ̈odinger equation. Applied Mathematics and Computation, 386, 125469.
- [16] Alquran, M., Ali, M., & Jadallah, H. (2022). New topological and non-topological unidirectional-wave solutions for the modified-mixed KdV equation and bidirectional-waves solutions for the Benjamin Ono equation using recent techniques. Journal of Ocean Engineering and Science, 7, 2, 163-169.
- [17] Jaradat, I., Alquran, M., Momani, S., & Baleanu, D. (2020). Numerical schemes for studying biomathematics model inherited with memory-time and delay-time. Alexandria Engineering Journal, 59, 5, 2969-2974.
- [18] Ali, M., Jaradat, I., & Alquran, M. (2017). New computational method for solving fractional Riccati equation. J. Math. Comput. Sci., 17, 1, 106-114.
- [19] Jaradat, A., Noorani, M., Alquran, M., & Jaradat, H. (2018). A novel method for solving Caputo-time-fractional dispersive long wave wu-zhang system. Nonlinear Dynamics and Systems Theory, 18, 2, 182-190.
- [20] Kumar, M., & Daftardar-Gejji, V. (2019). Exact solutions of fractional partial differential equations by Sumudu transform iterative method, in Fractional Calculus and Fractional Differential Equations, 157-180, Springer.
- [21] Daftardar-Gejji, V., & Kumar, M. (2018). New iterative method: a review. Frontiers in Fractional Calculus, 1.
- [22] Fadhiliani, D., Halfiani, V., Ikhwan, M., Qausar, H., Munzir, S., Rizal, S., Syafwan, M., & Ramli, M. (2020). The dynamics of surface wave propagation based on the Benjamin-Bona-Mahony equation. Heliyon, 6, 5, p. e04004.
- [23] Alquran, M., Ali, M., Jaradat, I., & Al-Ali, N. (2021). Changes in the physical structures for new versions of the Degasperis-Procesi-Camassa-Holm model. Chinese Journal of Physics, 71, 85-94.
- [24] Bulut, H., Baskonus, H.M., Tuluce, S., & Akturk, T. (2011). A comparison between HPM and ADM for the nonlinear Benjamin-Bona-Mahony equation. International Journal of Basic & Applied Sciences, 11, 3
- [25] Benjamin T.B., Bona, J.L., & Mahony, J.J., (1972). Model equations for long waves in nonlinear dispersive systems. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 272, 1220, 47-78.
- [26] Ghanbari, B., Baleanu, D., & Al Qurashi, M. (2019). New exact solutions of the generalized Benjamin-Bona-Mahony equation. Symmetry, 11, 1, 20.
- [27] Zulfiqar, A., & Ahmad, J. (2020). Exact solitary wave solutions of fractional modified Camassa-Holm equation using an efficient method. Alexandria Engineering Journal, 59, 5, 3565-3574.
- [28] Li, L., Li, H., & Yan W., (2020). On the stable self-similar waves for the Camassa-Holm and Degasperis-Procesi equations. Advances in Differential Equations, 25, 5/6, 315-334.
- [29] Wazwaz, A.-M. (2006). Solitary wave solutions for modified forms of Degasperis-Procesi and Camassa-Holm equations. Physics Letters A, 352, 6, 500-504.
- [30] Bhalekar, S., & Daftardar-Gejji, V. (2011). Convergence of the new iterative method. International Journal of Differential Equations, 2011.
- [31] Chen, Y., Li, B., & Zhang, H. (2005). Exact solutions for two nonlinear wave equations with nonlinear terms of any order. Communications in Nonlinear Science and Numerical Simulation, 10, 2, 133-138.
- [32] Ganji, D.D., Sadeghi, E., & Rahmat, M. (2008). Modified Camassa-Holm and Degasperis-Procesi equations solved by adomian’s decomposition method and comparison with HPM and exact solutions. Acta Applicandae Mathematicae, 104, 3, 303-311.
- [33] Zhang, B.-G., Li, S.-Y., & Liu, Z.-R. (2008). Homotopy perturbation method for modified Camassa-Holm and Degasperis-Procesi equations. Physics Letters A, 372, 11, 1867-1872.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-965d0823-4063-4bdb-a6c6-57c5a4d25a6a