PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of wop mathematical model for optimum track-keeping. A ship simulation study using VLCC, focusing on hard over rudder turning circle with three stages of validation analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Navigational safety necessitates careful route monitoring, which includes staying on the planned course. For a ship to achieve effective route monitoring while changing course, a wheel over point (WOP) must be precisely calculated and marked on a charted course. The reason is to warn the watchkeeping officer that the ship must make a course alteration to prevent overshooting the intended route. One of the techniques for appraising the WOP is the advance transfer technique (ATT). During a practical review by means of an electronic and paper chart work exercise of the ATT, this study discovered two research gaps related to the technique. Following that, this study created an improved advance transfer mathematical model (ATMM) by restructuring the use of the ship’s turning circle to overcome the limitations discovered. To validate the improvement of the ATMM over the ATT, data were collected by evaluating both methods using a ship simulator and performing a manoeuvring analysis. The data, specifically the reduction in the cross-track distance (XTD), was validated in three verification stages: compliance with XTL, percentage change, and Mann‒Whitney U test using IBM SPSS. In comparison to the ATT, the ATMM produces better results in terms of the course-keeping capability and it can be implemented as an algorithm in an integrated bridge navigation system for autonomous ship navigation safety.
Rocznik
Tom
Strony
156--174
Opis fizyczny
Bibliogr. 60 poz., rys., tab.
Twórcy
  • Akademi Laut Malaysia, Bt 30 Kg Tg Dahan, Kuala Sungai Baru, 78200 Melaka, Malaysia
  • Universiti Malaysia Terengganu, Kuala Nerus, 21030 Terengganu, Malaysia
  • Universiti Malaysia Terengganu, Kuala Nerus, 21030 Terengganu, Malaysia
  • Universiti Malaysia Terengganu, Kuala Nerus, 21030 Terengganu, Malaysia
Bibliografia
  • 1. Y. Wang and G. Tae Yeo, “The Selection of a Foreign Seafarer Supply Country for Korean Flag Vessels,” Asian J. Shipp. Logist., vol. 32, no. 4, pp. 221–227, 2016, doi: 10.1016/j. ajsl.2016.12.005.
  • 2. A. S. Kamis, A. F. Ahmad Fuad, M. N. Mohd Fadzil, and S. I. Saadon, “The Impact of Basic Training on Seafarers’ Safety Knowledge , Attitude and Behaviour,” J. Sustain. Sci. Manag., vol. 15, no. 6, pp. 137–158, Aug. 2020, doi: 10.46754/jbsd.2020.08.012.
  • 3. IMO, “STCW : including 2010 Manila amendments: STCW Convention and STCW Code : International Convention on Standards of Training, Certification and Watchkeeping for Seafarers,” 2018. [Online]. Available: http://www. imo.org/en/about/conventions/listofconventions/pages/ international-convention-on-standards-of-training,- certification-and-watchkeeping-for-seafarers-(stcw).aspx. [Accessed: 17 Jul. 2018].
  • 4. K. Skora and A. Wolski, “Voyage Planning,” Sci. J. Silesian Univ. Technol. Ser. Transp., vol. 92, pp. 123–128, 2016, doi: 10.20858/sjsutst.2016.92.12.
  • 5. D. J. House, “Preventing Collisions at Sea,” in Seamanship Techniques, London: Elsevier, 2004, pp. 395–444.
  • 6. Y. Wang, S. Chai, and H. D. Nguyen, “Experimental and numerical study of autopilot using Extended Kalman Filter trained neural networks for surface vessels,” Int. J. Nav. Archit. Ocean Eng., vol. 12, pp. 314–324, 2020, doi: 10.1016/j. ijnaoe.2019.11.004.
  • 7. IMO MSC, “Adoption of the Revised Performance Standards for Electronic Chart Display and Information Systems (ECDIS) MSC 82/24/Add.2,” 2006.
  • 8. A. M. Lekkas and T. I. Fossen, “Minimization of crosstrack and along-track errors for path tracking of marine underactuated vehicles,” 2014 Eur. Control Conf. ECC 2014, no. October 2015, pp. 3004–3010, 2014, doi: 10.1109/ ECC.2014.6862594.
  • 9. S. Vujičić, R. Mohović, and I. Đ. Tomaš, “Methodology for controlling the ship’s path during the turn in confined waterways,” Pomorstvo, vol. 32, no. 1, pp. 28–35, 2018, doi: 10.31217/p.32.1.2.
  • 10. N. Anwar, Navigation Advanced Mates/Masters, 2nd ed. Weatherby Seamanship International, a Division of Witherbys Publishing Group Limited, 2015.
  • 11. R. E. Reid, “Improvement of Ship Steering Control for Merchant Ships - Phase IIA,” Kings Point, New York, 1978.
  • 12. M. Chaal, “Ship Operational Performance Modelling for Voyage Optimization through Fuel Consumption Minimization,” World Maritime University Dissertations, 2018.
  • 13. R. Lu, O. Turan, E. Boulougouris, C. Banks, and A. Incecik, “A semi-empirical ship operational performance prediction model for voyage optimization towards energy efficient shipping,” Ocean Eng., vol. 110, no. July 2014, pp. 18–28, 2015, doi: 10.1016/j.oceaneng.2015.07.042.
  • 14. TAIC, “Final report MO-2016-202: Passenger ship, Azamara Quest , contact with Wheki Rock, Tory Channel, 27 January 2016,” no. January, 2016.
  • 15. MAIB, “MAIB Report No 30/2014 - Navigator Scorpio - Less Serious Marine Casualty,” 2014.
  • 16. ATSB, “Near grounding of Aquadiva,” 2018.
  • 17. T. Takemoto, T. Nomura, H. Yabuki, and K. Inoue, “Characteristics of Pilot’s Collision Avoiding Action and Prevention of Marine Collision Accidents,” J. Japan Inst. Navig., vol. 124, pp. 47–55, 2011, doi: 10.9749/jin.124.47.
  • 18. USCG, “Lesson from casualties,” Proceedings Merch. Mar. Counc., vol. 6, no. 1, 1949.
  • 19. GARD, “Pilot on the bridge - Role, authority and responsibility - GARD,” 2000. [Online]. Available: http:// www.gard.no/web/updates/content/52439/pilot-on-thebridge-role-authority-and-responsibility. [Accessed: 30-Jan-2020].
  • 20. MAIB, “Report on the investigation of the grounding of the Liberian-registered container ship P&O Nedlloyd Magellan in the Western Approach Channel to Southampton Water on 20 February 2001,” Southampton, 2002.
  • 21. ATSB, “Independent investigation into the grounding of the Hong Kong registered products tanker, Atlantic Blue,” 2009.
  • 22. TSB, “Marine Investigation Report M14P0014 Grounding Container vessel Cap Blanche Fraser River, British Columbia,” Canada, 2014.
  • 23. Gard, “Pilotage: A selection of articles previously published by Gard AS,” 2014.
  • 24. MAIB, “Faults Pilots for Double Grounding in UAE,” 2018. [Online]. Available: https://www.maritime-executive.com/ article/maib-faults-pilots-for-double-grounding-in-uae. [Accessed: 30-Jan-2020].
  • 25. Y. A. Park, T. L. Yip, and H. G. Park, “An Analysis of Pilotage Marine Accidents in Korea,” Asian J. Shipp. Logist., vol. 35, no. 1, pp. 49–54, 2019, doi: 10.1016/j.ajsl.2019.03.007.
  • 26. D. Gregory and P. Shanahan, The Human Element: A Guide to Human Behavior in The Shipping Industry. The Stationery Office (TSO), 2010.
  • 27. ICS, Bridge Procedure Guide, Fifth ed. London: Marisec Publications, 2016.
  • 28. MAIB, “Report on the investigation of the grounding and flooding of the ro-ro ferry Commodore Clipper in the approaches to St Peter Port, Guernsey on 14 July 2014,” 2015.
  • 29. Steamship Mutual, “The Importance of ECDIS Training and Good Watch-keeping Practices,” no. November, pp. 43–45, 2014.
  • 30. IMO, “Guidelines for voyage planning - Resolution A.893(21),” 1999.
  • 31. G. A. Quick, “Master / Pilot Relationship the Role of the Pilot in Risk Management,” Group of the International Organisation of Masters, Mates & Pilots of Maryland. pp. 1–15, 2011.
  • 32. G. Rutkowski, “ECDIS Limitations, Data Reliability, Alarm Management and Safety Settings Recommended for Passage Planning and Route Monitoring on VLCC Tankers,” TransNav, Int. J. Mar. Navig. Saf. Sea Transp., vol. 12, no. 3, pp. 483–490, 2018, doi: 10.12716/1001.12.03.06.
  • 33. ISES, “The majority of international fleet now fitted with ECDIS - ISES Association.” [Online]. Available: https:// www.isesassociation.com/the-majority-of-internationalfleet-now-fitted-with-ecdis/. [Accessed: 21 May 2021].
  • 34. IMO, SOLAS Consolidated Edition. London: International Maritime Organization, 2020.
  • 35. Marine Insight, “Understanding Different Types of Manoeuvres of a Vessel,” 2019. [Online]. Available: https:// www.marineinsight.com/naval-architecture/differenttypes-of-manoeuvres-of-a-vessel/. [Accessed: 21 May 2021].
  • 36. J. Wu, J. Thorne-Large, and P. Zhang, “Safety first: The risk of over-reliance on technology in navigation,” J. Transp. Saf. Secur., pp. 1–28, Apr. 2021, doi: 10.1080/19439962.2021.1909681.
  • 37. K. Aarsæther and T. Moan, “Combined maneuvering analysis, AIS and full-mission simulation,” TransNav Int. J. Mar. Navig. Saf. Sea Transp., vol. 1, no. 1, pp. 31–36, 2007.
  • 38. M. J. Van Hilten and P. H. M. Wolkenfelt, “The rate of turn required for geographically fixed turns: A formula and fast-time simulations,” J. Navig., vol. 53, no. 1, pp. 146–155, 2000, doi: 10.1017/S0373463399008590.
  • 39. Jithin, “Constant Radius Turn | Knowledge Of Sea,” Navigation, 2019. [Online]. Available: https:// knowledgeofsea.com/constant-radius-turn/. [Accessed: 23 Feb 2021].
  • 40. M.-S. Kim, H.-O. Shin, K.-M. Kang, and M.-S. Kim, “Variation of the Turning Circle by the Rudder Angle and the Ship’s Speed-Mainly on the Training Ship KAYA-,” Bull. Korean Soc. Fish. Technol., vol. 41, no. 2, pp. 156–164, May 2005, doi: 10.3796/KSFT.2005.41.2.156.
  • 41. V. N. Drachev, “Calculating Wheel-Over Point,” AsiaPacific J. Mar. Sci., vol. 2, no. 1, pp. 27–46, 2012.
  • 42. IMO, “Standards For Ship Manoeuvrability,” London, 2002. 43. TTEG, “Guidelines on Voluntary Pilotage Services in The Straits of Malacca and Singapore,” 2008.
  • 44. ITTC, “Full Scale Measurements Manoeuvrability Full Scale Manoeuvring Trials Procedure,” 2002.
  • 45. E. O. Voit, “Introduction to Mathematical Modeling,” in: A First Course in Systems Biology, pp. 19–50, 2020, doi: 10.4324/9780203702260-2.
  • 46. IMO ISM, International Safety Management Code (ISM Code). London: IMO Publishing, 2018.
  • 47. IMO MSC, “Adoption of the Revised Performance Standards for Electronic Chart Display and Information Systems (ECDIS) Msc 82/24/Add.2. MSC Resolution (Vol. 82).” 2006.
  • 48. M. Kristić, S. Žuškin, D. Brčić, and S. Valčić, “Zone of confidence impact on cross track limit determination in ECDIS passage planning,” J. Mar. Sci. Eng., vol. 8, no. 8, 2020, doi: 10.3390/JMSE8080566.
  • 49. S. Bansilal, “The application of the percentage change calculation in the context of inflation in Mathematical Literacy,” Pythagoras, vol. 38, no. 1, pp. 1–11, 2017, doi: 10.4102/pythagoras.v38i1.314.
  • 50. K. Beck, “How to Calculate Percent Difference,” 2020. [Online]. Available: https://sciencing.com/calculatepercent-difference-6331196.html. [Accessed: 20 Dec 2020].
  • 51. N. Nachar, “The Mann-Whitney U: A Test for Assessing Whether Two Independent Samples Come from the Same Distribution,” Tutor. Quant. Methods Psychol., vol. 4, no. 1, pp. 13–20, 2008, doi: 10.20982/tqmp.04.1.p013.
  • 52. A. Hart, “Mann-Whitney test is not just a test of medians: differences in spread can be important,” BMJ, vol. 323, no. 7309, pp. 391–393, Aug. 2001, doi: 10.1136/bmj.323.7309.391.
  • 53. R. Latorre, “Naval Architecture,” in Encyclopedia of Physical Science and Technology, vol. 105, no. 1, Elsevier, 2003, pp. 343–360.
  • 54. A. F. Molland, The Maritime Engineering Reference Book. Elsevier, 2008.
  • 55. P. Mucha, T. Dettmann, V. Ferrari, and O. el Moctar, “Experimental investigation of free-running ship manoeuvers under extreme shallow water conditions,” Appl. Ocean Res., vol. 83, no. May 2018, pp. 155–162, 2019, doi: 10.1016/j.apor.2018.09.008.
  • 56. M. G. Jeong, E. B. Lee, M. Lee, and J. Y. Jung, “Multicriteria route planning with risk contour map for smart navigation,” Ocean Eng., vol. 172, no. August 2018, pp. 72–85, 2019, doi: 10.1016/j.oceaneng.2018.11.050.
  • 57. T. Statheros, G. Howells, and K. McDonald-Maier, “Autonomous ship collision avoidance navigation concepts, technologies and techniques,” J. Navig., vol. 61, no. 1, pp. 129–142, 2008, doi: 10.1017/S037346330700447X.
  • 58. B. Belev, D. Dimitranov, A. Spasov, and A. Ivanov, “Application of information technologies and algorithms in ship passage planning,” Cybern. Inf. Technol., vol. 19, no. 1, pp. 190–200, 2019, doi: 10.2478/CAIT-2019-0011.
  • 59. G. Rutkowski, “Determining Ship’s Safe Speed and Best Possible Speed for Sea Voyage Legs,” TransNav, Int. J. Mar. Navig. Saf. Sea Transp., vol. 10, no. 3, pp. 425–430, 2017, doi: 10.12716/1001.10.03.07.
  • 60. K. Tiwari, K. Hariharan, T. V. Rameesha, and P. Krishnankutty, “Prediction of a research vessel manoeuvring using numerical PMM and free running tests,” Ocean Syst. Eng., vol. 10(3), pp. 333–357, 2020, doi: 10.12989/OSE.2020.10.3.333.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9657d2f4-b6cf-4c58-a149-3b2607cbd79a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.