PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis, structure and performance of calcium silicate ion exchangers from recycled container glass

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Numerous technical, economic and societal factors limit the recycling of waste soda-lime-silica glass back into the primary production process and accordingly alternative applications for this material are sought. This study demonstrates that waste soda-lime-silica container glass is a suitable feedstock material for the production of tobermorite, a calcium silicate cation exchanger. Tobermorites were synthesised at 100 °C from stoichiometric mixtures of container glass and lime under alkaline hydrothermal conditions. Increasing concentrations of sodium hydroxide (between 1.0 M and 4.0 M) in the reaction mixture promoted the formation and crystallisation of tobermorite, and also resulted in greater fragmentation of the silicate chains along the b-axis direction. The maximum removal capacities of these tobermorite specimens for Cd2+ (441 mg g-1) and Zn2+ (122 mg g-1) compared well with those of other waste-derived sorbents. Superior Cd2+- and Zn2+-uptake capacities and kinetics were observed for the least crystalline tobermorite specimen, indicating that stacking defects facilitate the transport and exchange of cations within the lattice.
Rocznik
Strony
5--16
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
  • School of Science, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
autor
  • School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK.
autor
  • School of Science, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK.
Bibliografia
  • 1. AL-WAKEEL E.I., EL-KORASHY S.A., EL-HEMALY S.A.S., RIZK M.A., 2001, Divalent Ion Uptake of Heavy Metal Cations by (Aluminum plus Alkali Metals)-Substituted Synthetic 1.1 nm-Tobermorites, J. Mater. Sci. 36, 2405-2415.
  • 2. AYADI A., STITI N., BOUMCHEDDA K., RENNAI H., LERARI Y., 2011, Elaboration and Characterization of Porous Granules Based on Waste Glass, Powder Technol. 208, 423-426.
  • 3. CHOY K.K.H., MCKAY G., 2005, Sorption of Cadmium, Copper and Zinc Ions onto Bone Char using Crank Diffusion Model, Chemosphere 60, 1141-1150.
  • 4. COLEMAN N.J., BRASSINGTON D.S., 2003, Synthesis of Al-substituted 11 Å Tobermorite from Newsprint Recycling Residue: a Feasibility Study, Mater. Res. Bull. 38, 485-497.
  • 5. COLEMAN N.J., 2005, Synthesis, Structure and Ion Exchange Properties of 11 Å Tobermorites from Newsprint Recycling Residue, Mater. Res. Bull., 40, 2000–2013.
  • 6. COLEMAN N.J., TRICE C.J., NICHOLSON J.W., 2009, 11 Å Tobermorite from Cement Bypass Dust and Waste Container Glass: a Feasibility Study, Int. J. Miner. Process. 93, 73-78.
  • 7. COLEMAN N.J., 2011, 11 Å Tobermorite Ion Exchanger from Recycled Container Glass, Int. J. Environ. Waste Manage. 8, 366–382.
  • 8. EL-HEMALY S.A.S., MITSUDA T., TAYLOR H.F.W., 1977, Synthesis of Normal and Anomalous Tobermorites, Cem. Concr. Res., 7, 429–438.
  • 9. KOMARNENI S., ROY R., ROY D.M., FYFE C.A., KENNEDY G.J., BOTHNER-BY A.A., DADOK J., CHESNICK A.S., 1985, 27Al and 29Si Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy of Al-substituted Tobermorites, J. Mater. Sci. 20, 4209–4214.
  • 10. KOMARNENI S., ROY R., ROY D.M., 1986, Pseudomorphism in Xonotlite and Tobermorite with Co2+ and Ni2+ Exchange for Ca2+ at 25°C, Cem. Concr. Res. 16, 47–58.
  • 11. KOMARNENI S., BREVAL E., ROY R., ROY D.M., 1988, Reactions of Some Calcium Silicates with Metal Cations, Cem. Concr. Res. 18, 204–220.
  • 12. KORKOSZ A., PTASZYNSKA A., HANEL A., NIEWIADOMSKI M., 2012, Cullet as a Filter Medium for Swimming Pool Water Treatment, Physicochem. Probl. Miner. Process. 48, 295–301.
  • 13. KRISHNANI K.K., MENG X., CHRISTODOULATOS C., BODDU V.M., 2008, Biosorption Mechanism of Nine Different Heavy Metals onto Biomatrix from Rice Husk, J. Hazard. Mater. 153, 1222–1234.
  • 14. LIMA S., DIAS A.S., LIN Z., BRANDÃO P., FERREIRA P., PILLINGER M., ROCHA J., CALVINO-CASILDA V., VALENTE A.A., 2008, Isomerization of D-Glucose to D-Fructose over Metallosilicate Solid Bases, Appl. Catal. A: General. 339, 21–27.
  • 15. MATTEUCCI F., DONDI M., GUARINI G., 2002, Effect of Soda-Lime Glass on Sintering and Technological Properties of Porcelain Stoneware Tiles, Ceram. Int. 28, 873–880.
  • 16. MITSUDA T., TAYLOR H.F.W., 1975, Influence of Aluminium on the Conversion of Calcium Silicate Hydrate Gels into 11 Å Tobermorite at 90°C and 120°C, Cem. Concr. Res. 5, 203–210.
  • 17. NELSON E.B., KALOUSEK G.L., 1977, Effects of Na2O on Calcium Silicate Hydrates at Elevated Temperatures, Cem. Concr. Res. 7, 687–694.
  • 18. NOCUŃ-WCZELIK W., 1999, Effect of Na and Al on the Phase Composition and Morphology of Autoclaved Calcium Silicate Hydrates, Cem. Concr. Res. 29, 1759–1767.
  • 19. PARK S.B., LEE B.C., KIM K.H., 2002, Studies on Mechanical Properties of Concrete Containing Waste Glass Aggregate, Cem. Concr. Res. 34, 2181–2189.
  • 20. PONTIKES Y., ESPOSITO L., TUCCI A., ANGELOPOULOS G.N., 2007, Thermal Behaviour of Clays for Traditional Ceramics with Soda-Lime-Silica Waste Glass Admixture, J. Eur. Ceram. Soc. 27, 1657–1663.
  • 21. REINIK J., HEINMAA I., KIRSO U., KALLASTE T., RITAMÄKI J., BOSTRÖM D., PONGRÁCZ E., HUUTANEN M., LARSSON W., KEISKI R., KORDÁS K., MIKKOLA J-P., 2011, Alkaline Modified Oil Shale Fly Ash: Optimal Synthesis Conditions and Preliminary Tests on CO2, J. Hazard. Mater. 196, 180–186.
  • 22. RICHARDSON I.G., GROVES G.W., 1997, The Structure of the Calcium Silicate Hydrate Phases Present in Hardened Pastes of White Portland Cement/Blast Furnace Slag Blends, J. Mater. Sci. 32, 4793–4802.
  • 23. SAEED A., AKHTER M.W., IQBAL M., 2005, Removal and Recovery of Heavy Metals from Aqueous Solution Using Papaya Wood as a New Biosorbent, Sep. Purif. Technol. 45, 25–31.
  • 24. SHAW S., CLARK S.M., HENDERSON C.M.B., 2000, Hydrothermal Formation of the Calcium Silicate Hydrates, Tobermorite (Ca5Si6O16(OH)2.4H2O) and Xonotlite (Ca6Si6O17(OH)2): an In Situ Synchrotron Study, Chem. Geol. 167, 129–140.
  • 25. SHRIVASTAVA O.P., GLASSER F.P., 1986, Ion-Exchange Properties of 11-Å Tobermorite, React. Solids 2, 261–268.
  • 26. VACLAVIKOVA M., MISAELIDES P., GALLIOS G., JAKABSKY S., HREDZAK S., 2005, Removal of Cadmium, Zinc, Copper and Lead by Red Mud, an Iron Oxides Containing Hydrometallurgical Waste, Studies in Surface Science and Catalysis 155, 517–525.
  • 27. VAZQUEZ G., MOSQUERA O., FREIRE M.S., ANTORRENA G., GONZALEZ-ALVAREZ J., 2012, Alkaline Pre-Treatment of Waste Chestnut Shell from a Food Industry to Enhance Cadmium, Copper, Lead and Zinc Ions Removal, Chem. Eng. J. 184, 147–155.
  • 28. WIEKER W., GRIMMER A-R., WINKLER A., MÄGI M., TARMAK M., LIPPMA E., 1982, Solid-State High-Resolution 29Si NMR Spectroscopy of Synthetic 14 Å, 11 Å and 9 Å Tobermorites, Cem. Concr. Res. 12, 333–339.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-96563ef3-a7f7-4518-94a0-d70301052c8f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.