Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study presents the conceptual design and stability assessment of an ultralight hydrogen-electric training aircraft. Building on a Minimum Viable Product (MVP) approach, the analysis first examines design requirements and trends in existing two-seat trainers. A conceptual design process is then applied, with adaptations for the integration of a hydrogen propulsion system comprising a fuel cell stack, electric motor, battery, and high-pressure hydrogen storage. Four alternative configurations for propulsion system placement were proposed and compared; the integrated nose-mounted layout was identified as the most promising. Stability and controllability analyses demonstrated that, despite relatively high moments of inertia and sensitivity in control forces, the aircraft remains stable and controllable across the flight envelope. The results confirm the technical feasibility of hydrogen propulsion integration in the ultralight training segment, while also highlighting the need for further aerodynamic validation, prototype testing, and regulatory development to support the future certification of hydrogen-powered aircraft.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
21--40
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
- Institute of Aviation and Applied Mechanics, Warsaw University of Technology, 24 Nowowiejska St., 00-665 Warsaw, Poland
Bibliografia
- [1] Kuk S. Hydrogen-powered ultralight training aircraft - a systems engineering approach. Transactions on Aerospace Research, 2025;279(2):1-17. https://doi.org/10.2478/tar-2025-0006.
- [2] Brewer GD, Morris RE, Lange RH, Moore JW. Volume I: Summary report: Study of the application of hydrogen fuel to long-range subsonic transport aircraft. NASA CR-132558. 1975.
- [3] Airbus Deutschland GmbH. Liquid hydrogen fuelled aircraft - system analysis. Final technical report (publishable version). 2004.
- [4] Yusaf T, Mahamude ASF, Kadirgama K, Ramasamy D, Farhana K, Dhahad HA, Abu Talib AR. Sustainable hydrogen energy in aviation - a narrative review. Int J Hydrogen Energy. 2024;52(Part C):1026-1045. https://doi.org/10.1016/j.ijhydene.2023.02.086
- [5] Gunasekar P, Manigandan S, Praveen Kumar TR. Hydrogen as the futuristic fuel for the aviation and aerospace industry - review. Aircraft Eng Aerosp Technol. 2021;93(3):410-416. https://doi.org/10.1108/AEAT-07-2020-0145
- [6] Yusaf T, Fernandes L, Abu Talib AR, Altarazi YSM, Alrefae W, Kadirgama K, et al. Sustainable aviation - hydrogen is the future. Sustainability. 2022;14(1):548.
- [7] Savvaris A, Xie Y, Malandrakis K, Lopez M, Tsourdos A. Development of a fuel cel hybrid-powered unmanned aerial vehicle. In: 24th Mediterranean Conference on Control and Automation (MED); 2016 Jun 21-24; Athens, Greece. p. 1242-1247. https://doi.org/10.1109/MED.2016.7536038
- [8] Desantes JM, Novella R, García-Cuevas LM, Lopez-Juarez M. Feasibility study for a fuel cell-powered unmanned aerial vehicle with a 75 kg payload. Transactions on Aerospace Research. 2022;2022(2):13-30. https://doi.org/10.1109/MED.2016.7536038
- [9] Czarnocki P, Dudek M, Drabarek K, Frączek W, Iwański G, Miazga T, et al. Electric motor-glider powered by a hydrogen fuel cell stack. MATEC Web Conf. 2019;304:03011. https://doi.org/10.1051/matecconf/201930403011
- [10] Ghosh D, Willich C, Kallo J. High efficient energy system for electric passenger aircraft propulsion. In: AIAA SciTech 2019 Forum; 2019 Jan; San Diego, CA. AIAA 2019-1672. https://doi.org/10.2514/6.2019-1672
- [11] Romeo G, Borello F, Correa G. ENFICA-FC: Design, realization and flight test of all-electric 2-seat aircraft powered by fuel cells. Proc ICAS. 2010. See also: Romeo G, Borello F. Design and realisation of a two-seater aircraft powered by fuel cel electric propulsion. Aeronaut J. 2010;114(1155):281-297. https://doi.org/10.1017/S0001924000003730
- [12] Bradley TH, Moffitt BA, Mavris DN, Parekh DE. Design space exploration of small-scale PEM fuel cell long-endurance aircraft. In: 6th AIAA Aviation Technology, Integration, and Operations Conference (ATIO); 2006 Sep 25-27; Wichita, KS. AIAA 2006-7701. https://doi.org/10.2514/6.2006-7701
- [13] Mobariz KN, Youssef AM, Abdel-Rahman M. Long endurance hybrid fuel cell-battery powered UAV. World J Model Simul. 2015;11(1):69-80.
- [14] Krawczyk JM, Mazur AM, Sasin T, Stokłosa AW. Fuel cells as alternative power for unmanned aircraft systems - current situation and development trends. Transactions on Aerospace Research. 2014;237(4):49-62.
- [15] Rondinelli S, Sabatini R, Gardi A. Challenges and benefits offered by liquid hydrogen fuels in commercial aviation. Int J Sustainable Aviation. 2017;3(3):200-216. https://doi.org/10.1504/IJSA.2017.10007966
- [16] Thirkell A, Chen R, Harrington I. A fuel cell system sizing tool based on current production aircraft. SAE Tech Pap. 2017;2017-01-2135. https://doi.org/10.4271/2017-01-2135
- [17] Kadyk T, Winnefeld C, Hanke-Rauschenbach R, Krewer U. Analysis and design of fuel cell systems for aviation. Energies. 2018;11(1):204. https://doi.org/10.3390/en11010204
- [18] Thomas CE. Fuel cell and battery electric vehicles compared. Int J Hydrogen Energy. 2009;34(15):6005-6020. https://doi.org/10.1016/j.ijhydene.2009.05.025
- [19] Jain A, Jain A. Battery technology and the future of battery swapping systems for electric vehicles: opportunities and challenges. Int J Adv Res. 2022;10(Oct):553-567. https://dx.doi.org/10.21474/IJAR01/15523
- [20] Kuśmierek A, Galiński C, Stalewski W. Review of hybrid gas-electric aircraft propulsion systems versus alternative systems. Prog Aerosp Sci. 2023;141:100925. https://doi.org/10.1016/j.paerosci.2023.100925
- [21] Adler EJ, Martins JRRA. Hydrogen-powered aircraft: Fundamental concepts, key technologies, and environmental impacts. Prog Aerosp Sci. 2023;141:100922. https://doi.org/10.1016/j.paerosci.2023.100922
- [22] Abu Salem K, Palaia G, Quarta AA. Review of hybrid-electric aircraft technologies and designs: critical analysis and novel solutions. Prog Aerosp Sci. 2023;141:100924. https://doi.org/10.1016/j.paerosci.2023.100924
- [23] Ansell PJ. Review of sustainable energy carriers for aviation: benefits, challenges, and future viability. Prog Aerosp Sci. 2023;141:100919. https://doi.org/10.1016/j.paerosci.2023.100919
- [24] Dudek M, Raźniak A, Dudek P, Korkosz M, Wygonik P, Bogusz P, Frączek W. Some aspects of gaseous hydrogen storage and the performance of a 10-kW polimer electrolyte membrane fuel cell stack as part of a hybrid power source. In: 2nd International Conference on the Sustainable Energy and Environmental Development (SEED); 2017 Nov 14-17; Kraków, Poland.
- [25] Romeo G, Cestino E, Borello F. More/all electric aircraft based on fuel cell Energy system: the ENFICA-FC experience. In: 28th International Congress of the Aeronautical Sciences (ICAS 2012); 2012 Sep 23-28; Brisbane, Australia.
- [26] Winnefeld C, Kadyk T, Bensmann B, Krewer U, Hanke-Rauschenbach R. Modelling and designing cryogenic hydrogen tanks for future aircraft applications. Energies. 2018;11(1):105. https://doi.org/10.3390/en11010105
- [27] Rondinelli S, Sabatini R, Gardi A. Challenges and benefits offered by liquid hydrogen fuels in commercial aviation. In: Practical Responses to Climate Change (PRCC 2014); 2014 Nov 27-28; Melbourne, Australia. https://doi.org/10.3316/informit.042058746545488
- [28] Sadraey MH. Aircraft design: a systems engineering approach. Chichester: Wiley; 2013.
- [29] Galiński C. Wybrane zagadnienia projektowania samolotów. Warszawa: Wydawnictwa Naukowe Instytutu Lotnictwa; 2016.
- [30] Galiński C. Wybrane zagadnienia konstrukcji samolotów. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej; 2020.
- [31] European Aviation Safety Agency. Certification Specifications for Very Light Aeroplanes (CS-VLA). Cologne: EASA; 2009.
- [32] Raymer DP. Aircraft design: a conceptual approach. 6th ed. Reston (VA): American Institute of Aeronautics and Astronautics; 2018.
- [33] Roskam J. Airplane design. Part V: Component weight estimation. 3rd ed. Lawrence (KS): DARcorporation; 2018.
- [34] MGM Compro. REB 90 electric motor: technical datasheet. Accessed 2024. https://www.mgm-compro.com/electric-motor/80-kw-electric-motor/
- [35] EH Group. EH81 fuel cell stack: technical datasheet. Accessed 2024. https://hyfindr.com/common/datasheet/product/174/inline/EHGroup-EH81-datasheet-1.pdf
- [36] Doosan Mobility Innovation. Ultralight type 4 hydrogen tank: datasheet. Accessed Vladimir Shestakov et al. 2024. https://www.doosanmobility.com/en/products/hydrogen-tank
- [37] Swann MD, Takahashi TT. A total flight envelope approach to conceptual design stability & control. In: 15th AIAA Aviation Technology, Integration, and Operations Conference (ATIO); 2015 Jun 22-26; Dallas, TX. AIAA 2015-3377. https://doi.org/10.2514/6.2015-3377
- [38] JSBSim. Mass properties database: documentation. Accessed 2025. https://jsbsim.sourceforge.net/MassProps.html
- [39] ZeroAvia. Hydrogen-electric aviation program overview. Accessed 2025. https://zeroavia.com/
- [40] Airbus. ZEROe: towards the world’s first zero-emission commercial aircraft. Accessed 2025. https://www.airbus.com/en/innovation/energy-transition/hydrogen/zeroe-our-hydrogen-powered-aircraft
- [41] H2FLY. Company and project overview. Accessed 2025. https://www.h2fly.de/
- [42] CFM International. RISE program overview. Accessed 2025. https://www.cfmaeroengines.com/rise/
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-965320d9-696c-4df3-ba0f-1997fd631805
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.