PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improving geopolymers with multi-walled carbon nanotubes for simultaneous adsorption of lead and anthracene from rainwater

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Udoskonalanie geopolimerów wielościennymi nanorurkami węglowymi do jednoczesnej adsorpcji ołowiu i antracenu z wody deszczowej
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to prepare and assess the effectiveness of a geopolymer doped with multi-walled carbon nanotubes functionalized with carboxyl groups (GEO+MWCNT) for removing lead (Pb(II)) and anthracene (ANT) from rainwater. Characterization of the GEO+MWCNT demonstrated an increased specific surface area and microporosity compared to the pristine geopolymer (GEO). Adsorption experiments revealed that GEO+MWCNT achieved higher removal efficiencies for Pb(II) and ANT compared to GEO alone. The maximum removal rates of lead and anthracene by GEO+MWCNT were 100% and 87.5%, respectively, compared to 71.5% and 76.2% for GEO. For GEO+MWCNT, lead removal was 78.2% in anthracene-containing solutions and 86.7% in anthracene-free rainwater. The optimal removal of Pb(II) occurred at pH 8. The adsorption kinetics followed a pseudo-second-order model, indicating a complex mechanism involving physical adsorption, chemisorption, and electrostatic attraction. These findings suggest that geopolymers, particularly when combined with MWCNT-COOH, have significant application potential for rainwater purification processes.
PL
Celem badań było przygotowanie i ocena skuteczności geopolimeru domieszkowanego wielościennymi nanorurkami węglowymi funkcjonalizowanymi grupami karboksylowymi (GEO+MWCNT) w usuwaniu ołowiu i antracenu (ANT) z wód opadowych. Przeprowadzone procesy adsorpcyjne pozwoliły określić skuteczność usuwania jonów ołowiu i antracenu, dobrać dawkę adsorbentu i czas procesu, a także określić wpływ pH roztworu na skuteczność adsorpcji. W badaniach skupiono się także na charakterystyce geopolimerów (potencjał SEM, BET, FTIR, XRD, XRF, ZETA), izotermach adsorpcji i kinetyce adsorpcji. Charakterystyka GEO+MWCNT wykazała zwiększoną powierzchnię właściwą i mikroporowatość w porównaniu z nieskazitelnym geopolimerem (GEO). Eksperymenty adsorpcyjne wykazały, że GEO+MWCNT osiągnął wyższą skuteczność usuwania Pb(II) i ANT w porównaniu z GEO. Maksymalne usunięcie ołowiu i antracenu przez GEO+MWCNT wyniosło odpowiednio 100% i 87,5%, natomiast dla GEO 71,5% i 76,2%. W przypadku GEO+MWCNT usunięcie ołowiu osiągnęło 78,2% w roztworach zawierających antracen i 86,7% w wodach deszczowych wolnych od antracenu. Optymalne usuwanie Pb(II) nastąpiło przy pH 8 dla GEO+MWCNT. Kinetyka adsorpcji była zgodna z modelem pseudodrugiego rzędu, wskazując na złożony mechanizm obejmujący adsorpcję fizyczną, chemisorpcję i przyciąganie elektrostatyczne. Odkrycia te sugerują, że geopolimery, szczególnie w połączeniu z MWCNT- COOH, mają znaczny potencjał zastosowania w procesach oczyszczania wody deszczowej.
Rocznik
Strony
32--44
Opis fizyczny
Bibliogr. 50 poz., fot., rys., tab., wykr.
Twórcy
  • Silesian University of Technology, Gliwice, Poland
  • Cairo University, Egypt
  • Silesian University of Technology, Gliwice, Poland
Bibliografia
  • 1. Abbas, A., Al-Amer, A.M., Laoui, T., Al-Marri, M.J., Nasser, M. S., Khraisheh, M. & Atieh, M.A. (2016). Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Separation and Purification Technology, 157, pp. 141-161. DOI: 10.1016/j.seppur.2015.11.039
  • 2. Adewoye, T.L, Ogunleye, O.O, Abdulkareem, A.S, Salawudeen, T.O. & Tijani, J.O (2021) Optimization of the adsorption of total organic carbon from produced water using functionalized multi-walled carbon nanotubes. Heliyon, 7(1), e05866. DOI:10.1016/j.heliyon.2020.e05866.
  • 3. Albidah, A., Alghannam, M., Abbas, H., Almusallam, T. & Al-Salloum Y (2021) Characteristics of metakaolin-based geopolymer concrete for different mix design parameters. Journal of Materials Research and Technology, 10, pp. 84-98. DOI:10.1016/j.jmrt.2020.11.104.
  • 4. Al-Zboon, K., Al-Harahsheh, M.S. & Hani, F.B. (2011) Fly ash-based geopolymer for Pb removal from aqueous solution. Journal of Hazardous Materials, 188(1-3), pp. 414-421. DOI:10.1016/j.jhazmat.2011.01.133.
  • 5. Al-Zboon, K.K., Al-Smadi, B.M. & Al-Khawaldh, S. (2017) Erratum to: Natural Volcanic Tuff-Based Geopolymer for Zn Removal: Adsorption Isotherm, Kinetic, and Thermodynamic Study. Water Air Soil Pollut 228, 164. DOI:10.1007/s11270-017-3335-3.
  • 6. Cheng, H., Liu, Y. & Li, X. (2021) Adsorption performance and mechanism of iron-loaded biochar to methyl orange in the presence of Cr6+ from dye wastewater. Journal of Hazardous Materials, 415, 125749. DOI: 10.1016/j.jhazmat.2021.125749.
  • 7. Cheng, M.C. & You, C.F. (2010) Sources of major ions and heavy metals in rainwater associated with typhoon events in southwestern Taiwan. Journal of Geochemical Exploration, 105(3), pp. 106-116. DOI:10.1016/j.gexplo.2010.04.010.
  • 8. Cheng, T.W., Lee, M.L., Ko, M.S., Ueng, T.H. & Yang, S.F. (2012) The heavy metal adsorption characteristics on metakaolin-based geopolymer. Applied Clay Science, 56, pp. 90-96. DOI:10.1016/j.clay.2011.11.027.
  • 9. Cheng, Z., Liu, Z., Hao, H., Lu, Y. & Li, S. (2022) Multi-scale effects of tensile properties of lightweight engineered geopolymer composites reinforced with MWCNTs and steel-PVA hybrid fibers. Construction and Building Materials, 342, 128090. DOI:10.1016/j.conbuildmat.2022.128090.
  • 10. Chłopek, Z., Suchocka, K., Dudek, M. & Jakubowski, A. (2016) Hazards posed by polycyclic aromatic hydrocarbons contained in the dusts emitted from motor vehicle braking systems. Archives of Environmental Protection, 42 (3), pp. 3-10. DOI:10.1515/aep-2016-0033.
  • 11. Costa, L.M., Almeida, N.G.S., Houmard, M., Cetlin, P.R., Silva, G.J.B. & Aguilar, M.T.P. (2021) Influence of the addition of amorphous and crystalline silica on the structural properties of metakaolin-based geopolymers. Applied Clay Science, 215, 106312. DOI:10.1016/j.clay.2021.106312.
  • 12. Degefu, D.M., Liao, Z., Berardi, U. & Labbé, G. (2022) The effect of activator ratio on the thermal and hygric properties of aerated geopolymers. Journal of Building Engineering, 45, 103414. DOI:10.1016/j.jobe.2021.103414.
  • 13. Duan, P., Yan, C., Zhou, W. & Ren, D. (2016) Development of fly ash and iron ore tailing based porous geopolymer for removal of Cu (II) from wastewater. Ceramics International, 42 (12), pp. 13507-13518. DOI:10.1016/j.ceramint.2016.05.143.
  • 14. Eldos, H.I., Zouari, N., Saeed, S. & Al-Ghouti, M.A. (2022) Recent advances in the treatment of PAHs in the environment: Application of nanomaterial-based technologies. Arabian Journal of Chemistry, 15 (7), 103918. DOI:10.1016/j.arabjc.2022.103918.
  • 15. Foo, K.Y. & Hameed, B.H. (2010) Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156 (1), pp. 2-10. DOI:10.1016/j.cej.2009.09.013.
  • 16. Gao, L., Zheng, Y., Tang, Y., Yu, J., Yu, X. & Liu, B. (2020) Effect of phosphoric acid content on the microstructure and compressive strength of phosphoric acid-based metakaolin geopolymers, Heliyon 6, e03853. DOI:10.1016/j.heliyon.2020.e03853.
  • 17. Huston, R., Chan, Y.C., Chapman, H., Gardner, T. & Shaw, G. (2012) Source apportionment of heavy metals and ionic contaminants in rainwater tanks in a subtropical urban area in Australia. Water Research, 46 (4), pp. 1121-1132. DOI:10.1016/j.watres.2011.12.008.
  • 18. Jin, H., Zhang, Y., Wang, Q., Chang, Q. & Li, C. (2021) Rapid removal of methylene blue and nickel ions and adsorption/desorption mechanism based on geopolymer adsorbent. Colloid and Interface Science Communications, 45, 100551. DOI:10.1016/j.colcom.2021.100551.
  • 19. Kamińska, G. & Bohdziewicz, J. (2016) Potential of various materials for adsorption of micropollutants from wastewater Environment Protection. Engineering, 42, pp. 161-178. DOI:10.5277/epe160413.27.
  • 20. Kara, I., Tunc, D., Sayin, F. & Akar, S.T. (2018) Study on the performance of metakaolin based geopolymer for Mn (II) and Co (II) removal. Applied Clay Science, 161, pp. 184-193. DOI:10.1016/j.clay.2018.04.027.
  • 21. Kara, İ., Yilmazer, D. & Akar, S.T. (2017) Metakaolin based geopolymer as an effective adsorbent for adsorption of zinc (II) and nickel (II) ions from aqueous solutions. Applied Clay Science, 139, pp. 54-63. DOI:10.1016/j.clay.2017.01.008.
  • 22. Khanal, G., Thapa, A., Devkota, N. & Paudel, U.R. (2020) A review on harvesting and harnessing rainwater: an alternative strategy to cope with drinking water scarcity. Water Supply, 20 (8), pp. 2951-2963. DOI:10.2166/ws.2020.264.
  • 23. Li, Y., Du, Q., Liu, T., Peng, X., Wang, J., Sun, J., Wang, Y., Wu, S., Wang, Z., Xia, Y. & Xia, L. (2013). Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chemical Engineering Research and Design, 91(2), pp. 361-368. DOI:10.1016/j.cherd.2012.07.007
  • 24. Li, F., Yang, Z., Chen, D., Lu, Y., & Li, S. (2021). Research on mechanical properties and micro-mechanism of Engineering Geopolymers Composites (EGCs) incorporated with modified MWCNTs. Construction and Building Materials, 303, 124516. DOI:10.1016/j.conbuildmat.2021.124516.
  • 25. Li, Y., Cheng, X., Liu, K., Yu, Y. & Zhou, Y. (2022). A new method for identifying potential hazardous areas of heavy metal pollution in sediments. Water Research, 224, 119065. DOI:10.1016/j.watres.2022.119065.
  • 26. Li, P. (2020). Mechanical properties and micro characteristics of fly ash-based geopolymer paste incorporated with waste Granulated Blast Furnace Slag (GBFS) and functionalized Multi-Walled Carbon Nanotubes (MWCNTs). Journal of Hazardous Materials, 401, 123339. DOI: 10.1016/j.jhazmat.2020.123339.
  • 27. Makar, J., Margeson, J. & Luh, J. (2005). Carbon nanotube/cement composites-early results and potential applications. In Proceedings of the 3rd international conference on construction materials: performance, innovations and structural implications. pp. 1-10). Vancouver, Canada.
  • 28. Maleki, A., Hajizadeh, Z., Sharifi, V. & Emdadi, Z. (2019). A green, porous and eco-friendly magnetic geopolymer adsorbent for heavy metals removal from aqueous solutions. Journal of Cleaner Production, 215, pp. 1233-1245. DOI:10.1016/j.jclepro.2019.01.084.
  • 29. Manyangadze, M., Chikuruwo, N.M., Narsaiah, T.B., Chakra, C.S., Charis, G., Danha, G. & Mamvura, T.A. (2020). Adsorption of lead ions from wastewater using nano silica spheres synthesized on calcium carbonate templates. Heliyon, 6(11), e05309. DOI:10.1016/j.heliyon.2020.e05309.
  • 30. Marszałek, A., Kamińska, G. & Salam, N.F.A. (2022). Simultaneous adsorption of organic and inorganic micropollutants from rainwater by bentonite and bentonite carbon nanotubes composites. Journal of Water Process Engineering, 46, 102550. DOI:10.1016/j.jwpe.2021.102550.
  • 31. Mobasherpour, I., Salahi, E. & Ebrahimi, M. (2014). Thermodynamics and kinetics of adsorption of Cu(II) from aqueous solutions onto multi-walled carbon nanotubes. Journal of Saudi Chemical Society, 18(6), pp. 792-801. DOI:10.1016/j.jscs.2011.09.006.
  • 32. Mojiri, A., Zhou, J.L., Ohashi, A., Ozaki, N. & Kindaichi, T. (2019). Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments. Science of the Total Environment, 696, 133971. DOI:10.1016/j.scitotenv.2019.133971.
  • 33. Moungam, L.M.B., Tchieda, K.V., Mohamed, H., Pecheu, N.C., Kaze, R.C., Kamseu, E. & Tonle, I.K. (2022). Efficiency of volcanic ash-based porous geopolymers for the removal of Pb²⁺, Cd²⁺, and Hg²⁺ from aqueous solution. Cleaner Materials, 5, 100106. DOI:10.1016/j.clema.2022.100106.
  • 34. Murat-Błażejewska, S. & Błażejewski, R. (2020). Converting sewage holding tanks to rainwater harvesting tanks in Poland. Archives of Environmental Protection, 46(4), pp. 121-131. DOI:10.24425/aep.2020.135770
  • 35. Niu, X., Elakneswaran, Y., Islam, C.R., Provis, J.L. & Sato, T. (2022). Adsorption behaviour of simulant radionuclide cations and anions in metakaolin-based geopolymer. Journal of Hazardous Materials, 429, 128373. DOI:10.1016/j.jhazmat.2022.128373.
  • 36. Oualit, M. & Irekti, A. (2022). Mechanical performance of metakaolin-based geopolymer mortar blended with multi-walled carbon nanotubes. Ceramics International, 48(11), pp. 16188-16195. DOI:10.1016/j.ceramint.2022.02.166.
  • 37. Qu, G., Zhou, J., Liang, S., Li, Y., Ning, P., Pan, K. & Tang, H. (2022). Thiol-functionalized multi-walled carbon nanotubes for effective removal of Pb²⁺ from aqueous solutions. Materials Chemistry and Physics, 278, 125688. DOI:10.1016/j.matchemphys.2021.125688.
  • 38. Rao, G.P., Lu, C. & Su, F. (2007). Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review. Separation and Purification Technology, 58 (1), pp. 224-231. DOI:10.1016/j.seppur.2006.12.006.
  • 39. Refaie, F.A.Z., Abbas, R. & Fouad, F.H. (2020). Sustainable construction system with Egyptian metakaolin-based geopolymer concrete sandwich panels. Case Studies in Construction Materials, 13, e00436. DOI:10.1016/j.cscm.2020.e00436.
  • 40. Sandroni, V. & Migon, C. (2002). Atmospheric deposition of metallic pollutants over the Ligurian Sea: Labile and residual inputs. Chemosphere, 47(7), pp. 753-764. DOI:10.1016/S0045-6535(01)00337-X.
  • 41. Sekkal, W. & Zaoui, A. (2022). High strength metakaolin-based geopolymer reinforced by pristine and covalent functionalized carbon nanotubes. Construction and Building Materials, 327, 126910. DOI:10.1016/j.conbuildmat.2022.126910.
  • 42. Sijal, A.A., Shamsuddin, M.R., Rabat, N.E., Zulfiqar, M., Man, Z. & Low, A. (2019). Fly ash-based geopolymer for the adsorption of anionic surfactant from aqueous solution. Journal of Cleaner Production, 229, pp. 232-243. DOI:10.1016/j.jclepro.2019.04.384.
  • 43. Sitarz-Palczak, E. (2023). Study of Zn(II) ion removal from galvanic sludge by geopolymers. Archives of Environmental Protection, 49(4), pp. 11-20. DOI:10.24425/aep.2023.148681.
  • 44. Tan, W., Li, Y., Ding, L., Wang, Y., Li, J., Deng, Q., Guo, F. & Xiao, X. (2019). Characteristics and metal leachability of natural contaminated soil under acid rain scenarios. Archives of Environmental Protection, 45(2), pp. 91-98. DOI: 10.24425/aep.2019.126698.
  • 45. Wan, J., Zhang, F., Han, Z., Song, L., Zhang, C. & Zhang, J. (2021). Adsorption of Cd²⁺ and Pb²⁺ by biofuel ash-based geopolymer synthesized by one-step hydrothermal method. Arabian Journal of Chemistry, 14(8), 103234. DOI:10.1016/j.arabjc.2021.103234.
  • 46. Yan, S., Ren, X., Zhang, F., Huang, K., Feng, X. & Xing, P. (2022). Comparative study of Pb²⁺, Ni²⁺, and methylene blue adsorption on spherical waste solid-based geopolymer adsorbents enhanced with carbon nanotubes. Separation and Purification Technology, 284, 120234. DOI:10.1016/j.seppur.2021.120234.
  • 47. Yang, J., Xu, L., Wu, H., Jin, J. & Liu, L. (2022). Microstructure and mechanical properties of metakaolin-based geopolymer composites contain high volume of spodumene tailings. Applied Clay Science, 218, 106412. DOI:10.1016/j.clay.2022.106412.
  • 48. Yu, Z., Song, W., Li, J. & Li, Q. (2020). Improved simultaneous adsorption of Cu(II) and Cr(VI) of organic modified metakaolin-based geopolymer. Arabian Journal of Chemistry, 13(3), pp. 4811-4823. DOI:10.1016/j.arabjc.2020.01.001.
  • 49. Zhang, X., Yuan, N., Xu, S., Li, Y. & Wang, Q. (2022). Efficient adsorptive elimination of organic pollutants from aqueous solutions on ZIF-8/MWCNTs-COOH nanoadsorbents: Adsorption kinetics, isotherms, and thermodynamic study. Journal of Industrial and Engineering Chemistry, 111, pp.155-167. DOI:10.1016/j.jiec.2022.03.048.-
  • 50. Zhang, Y., Cao, B., Zhao, L., Sun, L., Gao, Y., Li, J. & Yang, F. (2018). Biochar-supported reduced graphene oxide composite for adsorption and coadsorption of atrazine and lead ions. Applied Surface Science, 427, pp. 147-155. DOI:10.1016/j.apsusc.2017.07.237.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-964edb9b-f85d-4fbe-80a7-d150a85ba8cd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.