PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Liner Characteristics on the Acoustic Performance of Duct Systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Porous materials are used in many vibro-acoustic applications. Different models describe their performance according to material’s intrinsic characteristics. In this paper, an evaluation of the effect of the porous and geometrical parameters of a liner on the acoustic power attenuation of an axisymmetric lined duct was performed using multimodal scattering matrix. The studied liner is composed by a porous material covered by a perforated plate. Empirical and phenomenal models are used to calculate the acoustic impedance of the studied liner. The later is used as an input to evaluate the duct attenuation. By varying the values of each parameter, its influence is observed, discussed and deduced.
Rocznik
Strony
117--127
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor
  • Mechanics, Modeling and Production Research Laboratory, National School of Engineers of Sfax, University of Sfax, BP. 1173 Sfax 3038, Tunisia
autor
  • Mechanics, Modeling and Production Research Laboratory, National School of Engineers of Sfax, University of Sfax, BP. 1173 Sfax 3038, Tunisia
autor
  • Mechanics, Modeling and Production Research Laboratory, National School of Engineers of Sfax, University of Sfax, BP. 1173 Sfax 3038, Tunisia
autor
  • Group for Advanced Research in Dynamic Systems (ASU-GARDS), Ain Shams University, 1 Elsaryat St., Abbaseya, 11517 Cairo, Egypt
autor
  • Mechanics, Modeling and Production Research Laboratory, National School of Engineers of Sfax, University of Sfax, BP. 1173 Sfax 3038, Tunisia
autor
  • Mechanics, Modeling and Production Research Laboratory, National School of Engineers of Sfax, University of Sfax, BP. 1173 Sfax 3038, Tunisia
Bibliografia
  • 1. Allard J.F. (1993), Propagation of sound in porous media: Modeling sound absorbing materials, Elsevier Applied Science, London 1993, 105–115.
  • 2. Attenborough K. (1987), On the acoustic slow wave in air-filled granular media, Journal of Acoustical Society of America, 81, 93–102.
  • 3. Aur´egan Y., Starobinski R. (1999), Determination of Acoustical energy attenuation/production potentiality from the acoustical transfer functions of a multiport, Acustica united with Acta Acustica, 85, 788–792.
  • 4. Benjedidia M., Akrout A., Taktak M., Hammami L., Haddar M. (2014), Thermal effect on the acoustic behavior of an axisymmetric lined duct, Applied Acoustics, 86, 138–145.
  • 5. Bi W.P., Pagneux V., Lafarge D., Aur´egan Y. (2006), Modelling of sound propagation in a non-uniform lined duct using a Multi-Modal Propagation Method, Journal of Sound and Vibration, 289, 1091–1111.
  • 6. Biot M. (1956), Theory of propagation of elastic waves in a fluid-saturated porous solid, Journal of Acoustical Society of America, 28, 2, 168–178.
  • 7. Delany M.E, Bazley E.N. (1970), Acoustical properties of fibrous absorbent materials, Applied Acoustics, 3, 105–116.
  • 8. Elnady T. (2004), Modelling and Characterization of Perforates in Lined Ducts and Mufflers (Paper III), Ph.D. Thesis, The Royal Institute of Technology (KTH), Stockholm, Sweden, 2004.
  • 9. Elnady T., Boden H. (2003), On semi-empirical liner impedance modeling with grazing flow, Proceedings of 9th AIAA/CEAS, 2003.
  • 10. Elnady T., Elsaadany S., ˚Abom M. (2009), Investigation into Modeling of Multi-Perforated Mufflers, 16th International Congress on Sound and Vibration, Krakow, Poland, July 6–9.
  • 11. Elnady T., ˚Abom M., Allam S. (2010), Modeling Perforated Tubes in Mufflers using Two-ports, ASME Journal of Vibration and Acoustics, 132, 6.
  • 12. Guess A.W. (1975), Calculation of perforated plate liner parameters from specified acoustic resistance and reactance, Journal of Sound and Vibration, 40, 1, 119–137.
  • 13. Hamet J.F., B´erengier M. (1993), Acoustical characteristics of porous pavements: a new phenomenological model, Proceedings Inter-Noise, 1993.
  • 14. Hersh A.S., Walker B. (1977), Fluid mechanical model of the helmohltz resonator, Nasa report CR – 2904, 1977.
  • 15. Hubbard H.H. (1995), Aeroacoustics of Flight Vehicles: Theory and Practice, 1995.
  • 16. Johnson D.L, Koplik J., Dashen R. (1987), Theory of dynamic permeability and tortuosity in fluid-saturated porous media, Journal of Fluid Mechanics, 176, 379–402.
  • 17. Lafarge D., Lemarinier P., Allard J.F. (1997), Dynamic compressibility of air in porous structures at audible frequencies, Journal of Acoustical Society of America, 102, 4, 1995–2006.
  • 18. Lapka W. (2009), Insertion Loss of Spiral Ducts – Measurements and Computations, Archives of Acoustics, 34, 4, 537–545.
  • 19. Miki Y. (1990), Acoustical properties of porous materials – Modifications of Delany-Bazley models, Journal of the Acoustica Society of Japan, 19–24.
  • 20. Rao K.N., Munjal M.L. (1986), Experimental evaluation of impedance of perforates with grazing flow, Journal of Sound and Vibration, 108, 283–295.
  • 21. Sagartzazu X., Hervella L. (2008), Review in Sound Absorbing Materials, Archives of Computational Methods in Engineering, 15, 3, 311–342.
  • 22. Selamet A., Zu M.B., Lee I.J., Huff N.T. (2004), Analytical approach for sound attenuation in perforated dissipative silencers, Journal of the Acoustical Society of America, 115, 2091–2099.
  • 23. Taktak M., Ville J.M., Haddar M., Foucart F. (2007), D´etermination de l’imp´edance acoustique de mat´eriau par mesure de la matrice de diffusion multimodale, Proceedings of CMSM 2007.
  • 24. Taktak M., Ville J.M., Haddar M., Foucart F. (2008), Evaluation of a lined duct performance based on a 3D two port scattering matrix, Proceedings of Meetings in Acoustics, 4, 1–14.
  • 25. Taktak M., Ville J.M., Haddar M., Gabard G., Foucart F. (2010), A indirect method for the characterization of locally reacting liners, Journal of Acoustical Society of America, 127, 6, 3548–3559.
  • 26. Taktak M., Majdoub M.A., Ben Tahar M., Haddar M. (2012), Numerical Modelling of the Acoustic Pressure Inside an Axisymmetric Lined Flow Duct, Archives of Acoustics, 37, 2, 151–160.
  • 27. Taktak M., Majdoub M.A., Ben Tahar M., Haddar M. (2013), Numerical Characterization of Axisymmetric Lined Duct with Flow using Multimodal Scattering matrix, Journal of Theoretical and Applied Mechanics, 51, 2, 313–325.
  • 28. Zwikker C., Kosten C.W. (1949), Sound absorbing materials, Elsevier edition, Amsterdam.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-964bb777-fdda-455c-b867-87486d1e527b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.