Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Computer aided methods for investigation of the asymptotic stability of 2D discrete linear systems described by the first Fornasini-Marchesini model are given. The methods require computation of eigenvalues of complex matrices or values of complex functions. Effectiveness of the stability tests are demonstrated on numerical examples.
Słowa kluczowe
Rocznik
Tom
Strony
3--8
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
autor
- Bialystok University of Technology, Faculty of Electrical Engineering, Wiejska 45D, 15-351 Białystok, Poland
autor
- Bialystok University of Technology, Faculty of Electrical Engineering, Wiejska 45D, 15-351 Białystok, Poland, www: pb.edu.pl
Bibliografia
- [1] Y. Bistritz, “On an inviable approach for derivation of 2-D stability tests”, IEEE Trans. Circuit Syst. II, vol. 52, no. 11, 2005, pp. 713–718. DOI:http://dx.doi.org/10.1109/TCSII.2005.852929
- [2] M. Buslowicz, “Computer methods for stability investigation of the Fornasini-Marchesini model of linear 2D systems”, Measurement Automation and Robotics, no. 2, 2011, pp. 556–565 (in CD-ROM) (in Polish).
- [3] M. Buslowicz, “Computational methods for investigation of stability of models of 2D continuousdiscrete linear systems”, Journal of Automation, Mobile Robotics & Intelligent Systems, vol. 5, no. 1, 2011, pp. 3–7.
- [4] M. Buslowicz, “Stability of the second Fornasini-Marchesini type model of continuous-discrete linear systems”, Acta Mechanica et Automatica, vol. 5, no. 4, pp. 1–5, 2011.
- [5] M. Buslowicz, A. Ruszewski, “Stability investigation of continuous-discrete linear systems”, Measurement Automation and Robotics, no. 2, 2011, pp. 566–575 (in CD-ROM) (in Polish).
- [6] M. Buslowicz, A. Ruszewski, “Computer methods for stability analysis of the Roesser type model of 2D continuous-discrete linear systems”, Int. J. Appl. Math. Comput. Sci., vol. 22, no. 2, 2012, pp. 401–408. DOI: http://dx.doi.org/10.2478/v10006-012-0030-9
- [7] M. Buslowicz, A.E. Rzepecki, “Computer methods for stability investigation of the Roesser model of 2D linear systems”, Measurement Automation and Robotics, no. 2, 2012, pp. 298–302 (in CD-ROM) (in Polish).
- [8] Y. Ebihara, Y. Ito, T. Hagiwara, “Exact stability analysis of 2-D systems using LMIs”, IEEE Trans. Automat. Control, vol.51, no. 9, 2006, pp. 1509–1513. DOI: http://dx.doi.org/10.1109/TAC.2006.880789
- [9] E. Fornasini, G. Marchesini, “State-space realization theory of two-dimensional filters”, IEEE Trans. Automat. Control,vol. AC-21, 1976, pp. 484–492. DOI: http://dx.doi.org/10.1109/TAC.1976.1101305
- [10] G.D. Hu, M. Liu, “Simple criteria for stability of two-dimensional linear systems”, IEEE Trans. Signal Processing, vol. 53, 2005, pp. 4720–4723.
- [11] T. Kaczorek, Two-Dimensional Linear Systems, Springer, Berlin, 1985. DOI:http://dx.doi.org/10.1007/BFb0005617
- [12] T. Kaczorek, Positive 1D and 2D Systems, Springer, London, 2002. DOI:http://dx.doi.org/10.1007/978-1-4471-0221-2
- [13] T. Kaczorek, “LMI approach to stability of 2D positive systems with delays”, Multidimensional Systems and Signal Processing, vol. 20, 2009, pp. 39–54.
- [14] T. Kaczorek, “Asymptotic stability of positive fractional 2D linear systems”, Bull. Pol. Acad. Sci.,Tech. Sci.,vol. 57, no. 3, 2009, pp. 289–292. DOI:http://dx.doi.org/10.2478/v10175-010-0131-2
- [15] T. Kaczorek, “Practical stability of positive fractional 2D linear systems”, Multidimensional Systems and Signal Processing, vol. 21, 2010, pp. 231–238. DOI:http://dx.doi.org/10.1007/s11045-009-0098-z
- [16] T. Kaczorek, Selected Problems of Fractional Systems Theory, Springer, Berlin 2011. DOI: http://dx.doi.org/10.1007/978-3-642-20502-6
- [17] H. Kar, V. Sigh, “Stability of 2-D systems described by the Fornasini-Marchesini first model”, IEEE Trans. Signal Processing, vol. 51, 2003, pp. 1675–1676. Doi: http://dx.doi.org/10.1109/TSP.2003.811237
- [18] L.H. Keel, S.P. Bhattacharyya, “A generalization of Mikhailov’s criterion with applications”. In: Proc. of the American Control Conference, Chicago, USA, vol. 6, 2000, pp. 4311–4315. DOI: http://dx.doi.org/10.1109/ACC.2000.877035
- [19] J. Kurek, “Stability of positive 2D systems described by the Roesser model”, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 49, no. 4, 2002, pp. 531–533.
- [20] T. Liu, “Stability analysis of linear 2-D systems”, Signal Processing, vol. 88, 2008, pp. 2078–2084. DOI: http://dx.doi.org/10.1016/j.sigpro.2008.02.007
- [21] W.-S. Lu, “On a Lyapunov approach to stability analysis of 2-D digital filters”, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 45, 1994, pp. 665–669. DOI: http://dx.doi.org/10.1109/81.329727
- [22] T. Ooba, “On stability analysis of 2-D systems based on 2-D Lyapunov matrix inequalities”, IEEE Trans. Circuit Syst. I, Fundam. Theory Appl., vol. 47, 2000, pp. 1263–1265.
- [23] W. Paszke, E. Rogers, P. Rapisarda, K. Gałkowski, A. Kummert, “New frequency domain based stability tests for 2D linear systems”, Proc. of 17th Int. Conf. Methods and Models in Automation and Robotics, 2012 (CD-ROM). DOI: http://dx.doi.org/10.1109/MMAR.2012.6347922
- [24] M. Twardy, “An LMI approach to checking stability of 2D positive systems”, Bull. Pol. Acad. Sci., Tech. Sci., vol. 55, no. 4, 2007, pp. 385–395.
- [25] X. Xiao, R. Unbehauen, “New stability test algorithm for two-dimensional digital filters”, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 45, no. 7, 1998, pp. 739–741.
- [26] S.-F. Yang, C. Hwang, “s”, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 47, no. 7, 2000, pp. 1120–1123.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9644a22a-4739-4c1a-a05c-034b65552c22