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Abstract:

Computer aided methods for investigation of the asymp-
totic stability of 2D discrete linear systems described by
the first Fornasini-Marchesini model are given. The meth-
ods require computation of eigenvalues of complex ma-
trices or values of complex functions. Effectiveness of the
stability tests are demonstrated on numerical examples.
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1. Introduction

There are several models of 2D discrete linear sys-
tem [9, 11, 12]. The most popular is the Fornasini-
Marchesini model introduced in [9].

The problem of asymptotic stability of linear 2D
systems has considerable attention since about 40
years. For the stability analysis of these systems var-
ious methods can be applied: analytical (similar to the
Schur stability test of 1D systems) [1], based on Lya-
punov stability theory [21, 22], based on LMI [8, 13,
23, 24], based on spectral radius [10, 17, 20, 25, 26],
frequency domain methods [23] or algebraic methods
for positive systems [12,13, 14, 15, 16, 19]. The analyt-
ical methods require symbolic computations whereas
the methods based on Lyapunov stability theory, LMI
or spectral radius give only sufficient but not neces-
sary conditions for stability of standard systems.

The main purpose of this paper is to present new
frequency domain necessary and sufficient conditions
for investigation of asymptotic stability of the first
Fornasini-Marchesini model of 2D standard linear sys-
tems.

The following notation will be used: Z - the set of
non-negative integers; R™*™ - the set of n X m real ma-
trices; 4;{X} — i-th eigenvalue of X.

2. Problem Formulation

Consider the state equation of the first Fornasini-
Marchesini model of 2D linear system [9, 11, 12]

x(+1,j+1)=A4ox(,j) +A1x( + 1,)) 1
+A,x(i,j + 1) + Bu(i,j), i,j€Z,, 1)
where x(i,j) € R", u(i,j) € R™ and 4,, A4, A, €
ERnxn’ B € mnxm_
The boundary conditions for (1) are as follows
x(i, 0) = Xjo, (2)

x(0,)) =xp;, LjEZy.

The characteristic matrix of the model (1) has the
form

H(zy,23) = 212510 — Ao — 2141 — 224;,  (3)
where z; and z, are complex variables.
The characteristic function
w(zq,25) = detH(zq,23)
(4)

= det[leZIn - AO - ZlAl - ZzAz]

of the model (1) is a polynomial in two independent
variables z; and z,, of the form

n n
_ k.l
w(zy,2;) = Ag1Z123,

The model (1) is called asymptotically stable
(Schur stable) if for u(i,j) = 0 and bounded bound-
ary conditions (2) the condition x(i,j) — 0 holds for
i,j = oo,

From [1, 11] we have the following theorem.
Theorem 1. The model (1) is asymptotically stable if
and only if

(5)

w(zy,2,) #0, V|z;|=1 and V|z,| > 1.

(6)

The polynomial (5) satisfying the condition (6) is
called discrete stable or Schur stable. Several algebraic
methods for asymptotic stability checking of such bi-
variate polynomials were given in [1].

Computational method for investigation of asymp-
totic stability of the Fornasini-Marchesini model (1)
has been given in [2]. This method requires computa-
tion of eigenvalue-loci of complex matrices.

The main purpose of this paper is to present new
computational methods for checking the condition (6)
of asymptotic stability of the model (1) which do not
require a priori knowledge of the characteristic bivari-
ate polynomial (5).

3. Solution of the Problem

Theorem 2. The model (1) is asymptotically stable if
and only if the following two conditions hold:

w(el,z,) #0, |z,| = 1, vy € [0, 2], j* = -1, (7)

w(z,,e/?) #0, |z|=1, Vw€][0, 2n]. (8)

Proof. From [1, 2] it follows that (6) is equivalent to
the conditions

w(z1,22) #0, |z¢] =1, |z3| =1,

9)
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w(z1,22) #0, |z11 =1, |z =1. (10)

It is easy to see that conditions (9) and (10) can be
written in the forms (7) and (8), respectively. B
Lemma 1. If the model (1) is asymptotically stable
then

LADI<1, i=1,2..n, (11)

and
14i(4)] <1, i=12,..,n (12)

Proof. From (1) for A, = 0, 4, = 0 and B = 0 one ob-
tains the homogeneous state equation of the discrete-
time linear system

x(i+1,j+1) = Ayx(i + 1,)). (13)

The system (13) is asymptotically stable if and only
if the condition (11) holds, i.e. the matrix A; is Schur
stable (is a Schur matrix).

Similarly, substitution of A4, = 0, A; = 0 and
B = 0 in (1) gives the homogeneous state equation
of discrete-time linear system

x(i+1,j+1) = Ax(i,j+ 1), (14)

which is asymptotically stable if and only if the condi-
tion (12) holds, i.e. the matrix A, is Schur stable (is a
Schur matrix).

Asymptotic stability of the model (1) with any
fixed triple of matrices Ay, A; and A, means that the
condition (6) holds for this triple. In particular, asymp-
totic stability of the system with 4y, = 0and 4, = 0 (or
Ay = 0and A; = 0) is equivalent to satisfaction of the
condition (6) for Ay = 0 and A, = 0 (or 4y = 0 and
A; = 0). Hence, the conditions (11) and (12) are nec-
essary for asymptotic stability of the model (1). H

To show that the conditions (11) and (12) are not
sufficient, we consider the scalar system (1) with 4; =
0, A, = 0.5 ((11) and (12) hold) and 4y = 1.
In this case the characteristic equation has the form
Z12Z,—0.5z,—1 = 0. From this equation we have thatif,
for example, z; = 0 then z, = —2 and if z, = 0.5 then
z;7 = 2.5. This means that there exist such values of
roots of the characteristic equation which do not sat-
isfy the condition (6) and the system is unstable.

Using the rules for computing the determinant of
block matrices, we obtain that the characteristic ma-
trix (3) of the model (1) can be computed from one of
the following equivalent formulae

H(z1,25) = [211n — Az][22]5 — S1(21)], (15)

H(z1,25) = 2210 — Aq][21]5 — S2(22)], (16)

where

S1(z1) = (211 — A3) 1 (A + z141), (17)

S2(22) = (Z21n — A1) 7 (Ap + 2242). (18)
Using (4) and (15), (16) we can write

w(zy,22) = det[z, [, — Az] det[zz ], — S1(z1)], (19)

w(zy,2,) = det[zy], — Aq] det[z1], — S5(22)]. (20)
From (15) for z; = e/¥ we have
H(e”, z3) = [ejyln — Az][z20n — 51(€jy)]: (21)
where
S1(e”) = (1, — A)) "M (Ao +eVAr).  (22)

Lemma 2. Let the necessary condition (12) be satis-
fied. The condition (7) holds if and only if all eigenval-
ues of the complex matrix (22) have absolute values
less than one forally € Y = [0, 2m].

Proof. From (21) we have

w(el?,z,) = det[e/V],, — A,] det[z,1, — S;(e/Y)].
(23)
If (12) holds then the matrix I,,e/Y — A, is non-
singular for all y € Y. Hence, from (23) it follows that
the condition (7) is satisfied if and only if
det[z,],, — S; (/)] # 0,

|z2] =1, VyeY. (24)

Satisfaction of (24) means that all eigenvalues of
the complex matrix (22) have absolute values less than
oneforallyetY. N

Eigenvalue-loci of S;(e/?) for y € [0, m] and for
y € [m, 2m] are symmetric respect to the real axis
of the complex plane. Therefore, we can equivalently
consider in (24) the interval Y = [0, ] instead of the
interval Y = [0, 2m].

From (16) for z, = e/* we have

H(zy,€/®) = [/, — A1][z1], — S(e/)]  (25)
and

w(zy,€/) = det[e°l, — A;] det[zy1, — Sp(e/)],
(26)
where

S2(e7?) = (e/°I, — A1) (A + e/?Ay). (27)

Lemma 3. Let the necessary condition (11) be satis-
fied. The condition (8) holds if and only if all eigenval-
ues of the complex matrix (27) have absolute values
less than one for all w € Q = [0, 2x].
Proof. If (11) holds then the matrix e/“I,, — A, is non-
singular for all w € Q. From (26) we have that the con-
dition (8) is satisfied if and only if

det[z,I,, — S,(e/®)] # 0,

|z1] =1, VweQ, (28)

i.e. all eigenvalues of the matrix (27) have absolute val-
ueslessthanoneforallwe Q. W

Similarly as in Lemma 2, we can equivalently con-
sider the interval ) = [0, ] instead of the interval
Q = [0, 2mx].

The conditions of Lemmas 2 and 3 can be written
in the following forms

12:{S1(e/)} <1,

vyey, i=12,.,n (29)



Journal of Automation, Mobile Robotics & Intelligent Systems

VOLUMES, N°2 2014

and

2:{S,(e’)} <1, VweQ i=1,2.,n (30)
respectively.
Theorem 3. The model (1) is asymptotically stable if
and only if the conditions (11), (12), (29) and (30) are
satisfied.
Proof. The proof follows directly from Theorem 2 and
Lemmas1,2and3. W

Computational methods for checking the con-
ditions (29) and (30) for the Fornasini-Marchesini
model (1), based on the eigenvalues-loci of the matri-
ces (22) and (27), are given in [2].

It is easy to see that the conditions (29) and (30)
can be written in the forms: n(y) > 0 forall y € Y and
w(w) > 0 for all w € Q, where

n) =1 - max |2{Si(e”)}, (31)
p(@) = 1= max [4(SE@)  (32)

Hence, from Theorem 3 one obtains the following
lemma.
Lemma 4. Let the necessary conditions (11), (12)
hold. The model (1) is asymptotically stable if and only
ifn(y) > 0forally € Y and u(w) > O forallw € Q or
equivalently, the conditions

Nmin = r;lei;l 1) >0, Hmin =minu(w) >0, (33)

are satisfied.
Example 1. Consider the model (1) with the matrices

-03 01 —04 ]
Ap=]04 -01 0 ,
0 03 —0.2
01 —-02 0
A,=|0 04 03], (34)
01 03 0.1 |
03 01 —02]
A, =] 0 02 0.1
-03 —-0.2 04

Computing eigenvalues of A; and 4, we obtain
- eigenvalues of A;:-0.1233; 0.1577; 0.5656.

- eigenvalues of 4,: 0.1166; 0.2343; 0.5491.

Hence, the necessary conditions (11) and (12)
hold, i.e. the matrices A; and A, are Schur stable.

Plots of the functions n(y) (y € Y) and y(w) (w €
Q) are shown in Figure 1. By ‘0’ are denoted the end-
points of the plots. The ranges Y = [0, 2m] and Q =
[0, 2m] were digitized with the steps Ay = 0.01m and
Aw = 0.01m.

From Figure 1 and also from the fact that n,, =
0.3012 > 0 and ppyin, = 0.2737 > 0 it follows that the
conditions of Lemma 4 are satisfied and the model is
asymptotically stable. W

Checking the conditions of Theorem 3 and Lemma
4 require computation of eigenvalues of the matrices
(22) and (27). This may be inconvenient with respect
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Fig. 1. Plots of the functions (31) (curve 1) and (32)
(curve 2) fory = w € [0, 2n]

to computational problems, particularly in the case of
ill conditioned matrices. Therefore, we present a new
method for investigation of asymptotic stability of the
model (1) which require computation only determi-
nants of some matrices, not eigenvalues.

Consider the polynomial

w1 (e, z,) = det(z,1, — S1(e’?)), (35)

where the matrix S; (e/) is defined by (22). From the
classical Mikhailov theorem (see for example [18]) it
follows that the condition (24) holds if and only if for
any fixed y € Y plot of w, (e/¥,e/®) for w € Q encir-
cles in the positive direction n times the origin of the
complex plane.

Direct application of the Mikhailov theorem to
checking the condition (24) is not practically reliable
for a large values of n. Therefore, we introduce the ra-
tional function

Wl(ejy’ ej“’)

i) = = ay . YEY. (9

instead of w; (e, e/®), where wy,(z,) is any Schur
stable polynomial of degree n.

Lemma 5. The condition (29) holds if and only if for
all fixed w € Q plot of the function (36) does not en-
circle or cross the origin of the complex plane.

Proof. If the reference polynomial w,(z;) is Schur
stable then from the Argument Principle we have

Aargw,,(e/®) = n. (37)
WEN

From (36) it follows that for any fixed y € Y
A argweg ¢1(ejy! ej(l)) =A argweg wq (ejy; ejw)
—Aarg, , wio(e/®).

(38)

The matrix (22) for any fixed y € Y is Schur stable
if and only if

Aarg wy(e??,e/®) = Aarg wy,(e/?) =n,
we[0,2m] w€|[0,27]
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which holds if and only if Aarg P1(e/7,e/?) = 0.
Taking into account all y € Y, we obtain that the
above holds if and only if for all fixed w € Q plot of
(36) as a function of y € Y does not encircle or cross
the origin of the complex plane. W
The reference polynomial w4,(z,) can be chosen
in the form

wi(1,23) = det(z;1, — §1(1)), (39)

where S;(1) = (I, — 43) (4o + A;), which we get
from (35) and (22) substituting y = 0. Schur stabil-
ity of (39) is necessary for Schur stability of complex
polynomial (35) forally € Y.

Ifwq,(22) = wy(1,2,), then

wy (ejy’ ejw)

7Y, elv) = —, €Y. 40
P1(e?7,e/?) w1 (L, el y (40)
Plot of (40) as a function of y € Y (with any fixed
w € (1) is aclosed curve. It begins with y = 0 and ends
with y = 2m in the point ¢4 (1,e/®) = 1.
Now, we consider the complex polynomial

wy(z1,e/?) = det(z,1, — S,(e?)), (41)

where the matrix S, (e/®) is defined by (27).

Let w,,(z1) be any Schur stable polynomial of de-
gree n.

Proceeding similarly as in the case of Lemma 5, we
obtain the following lemma.
Lemma 6. The condition (30) holds if and only if for
all fixed y € Y plot of the function

JY oy — WZ(ejy' ejw) =0 42
Da(e?, ) = =S, wen (4)
does not encircle or cross the origin of the complex
plane, where w,(e/”, /%) has the form (41) for z; =
elv.

The reference polynomial w,,(z;) can be chosen
in the form

w2 (21, 1) = det(z, 1, — 52 (1)), (43)

where S, (1) = (I, — A1) (4o + A,). Schur stability
of (43) is necessary for Schur stability of the complex
polynomial (41) for all w € Q.

Ifw,,(z1) = wy(z4, 1), then

W, (ejy' ejw)

" Leq 44
wy(e, 1) ¢ (44)

p2(e/, /) =

Plot of (44) as a function of w € Q with the fixed
y € Y is a closed curve. It begins with w = 0 and ends
with w = 27 in the point ¢, (e/”,1) = 1.

From Theorem 3 and Lemmas 5 and 6 we have the
following theorem.
Theorem 4. Assume that the necessary conditions
(11) and (12) are satisfied and the polynomials (39)
and (43) are Schur stable. The model (1) is asymptot-
ically stable if and only if the following two conditions
hold:

1) plots of the function (40) do not encircle or cross
the origin of the complex plane for all fixed w € Q,

2) plots of the function (44) do not encircle or cross
the origin of the complex plane for all fixed y € Y.
Applying computational method given in Theorem

4 we can take into consideration the following remark.

Remark. Refer to point 1) of Theorem 4, one should

set any fixed w € (), determined with appropriately

small step Aw, and draw plots of the function (40) sep-
arately digitizing the range Y with a sufficiently small
step Ay. For point 2) of Theorem 4 one should set any
fixed y € Y, determined with appropriately small step

Ay, and draw plots of the function (44) separately dig-

itizing the range Q with a sufficiently small step Aw.

Plots should be smooth especially near the origin of

the complex plane so that the important parts have not

been neglected.

Example 2. Using Theorem 4 check asymptotic stabil-

ity of the model (1) with the matrices (34).

In Example 1 it has been shown that the necessary
conditions (11) and (12) hold.
Computing eigenvalues of the matrices S;(1) =

(In—A2)" (Ao +41) and S5(1) = (I, —41) "' (Ao +42)

we obtain respectively:

Ayg = 0.4201 + j0.2872,
Ay, = 0.4201 — j0.2872, (45)
113 = _06204,

Ay = 04762 + j0.2152,
dyy = 04762 — j0.2152, (46)
){23 = _05703

Moduli of all eigenvalues (45) and (46) are less
than one and the reference polynomials (39) and (43)
are Schur stable.

Plots of (40) and (44) are shown in Figures 2 and 3,
respectively. The ranges Q = [0, 2r] and Y = [0, 2m]
for all plots was digitized with the steps Ay = 0.01r
and Aw = 0.01m.
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Fig. 3. Plots of (44)

From Figures 2 and 3 is follows that the plots do
not encircle the origin of the complex plane forall y €
Y and w € Q. This means, according to Theorem 4, that
the model (1), (34) is Schur stable. W

Now we consider the 1st order Fornasini-
Marchesini model described by the equation

x((+1,j+1) =agx(i,j) +ax(i+1,))

47
+a,x(i,j + 1) + bu(i,)), (47)

where a4 , a; , a, and b are real coefficients.
For the system (47) the necessary conditions (11)
and (12) take the forms

lai| <1, |az| <1 (48)

The matrix (22) for the system has the form

ag +e¥a,

S.(e?) = (49)

ey —a, ’

It is easy to check that plot of (49) fory € Y =
[0, 2r]isacircle with the center atreal axis. This circle
crosses real axis in points

ag+a

. 1 . a1 _ao
S10 = 51(’%) = 1-q ,» Sizr = S1(e/") =

1+a,’

Hence, the first condition (33) holds if and only if
Nmin = 1 —max{|Syol,[S1-[} > 0. (50)

Similarly, we can show that the second condition
(33) holds if and only if

Pmin = 1 — max {|Syl, [S2-[} > 0, (51)
where
. ao + az . az - ao
So0 = S,(e/%) = , S, =5,(e/7) = .
20 2(e7%) 1-q 21 2(e’™) 1+a

From the above and Theorem 3 we have the follow-
ing condition.
Lemma 7. The 1st order Fornasini-Marchesini model
(47) is asymptotically stable if and only if the condi-
tions (48) and (50), (51) are satisfied.

4. Concluding Remarks

Simple necessary conditions (Lemma 1) and two
computational methods for investigation of asymp-
totic stability of the first Fornasini-Marchesini model
(1) of 2D discrete linear systems have been given.

The first method (Theorem 3, Lemma 4) require
computation of eigenvalues of complex matrices (22)
and (27). Similar methods have been applied in [7, 23]
to asymptotic stability analysis of the Roesser model
of 2D systems and in [3] for the Fornasini-Marchesini
and the Roesser type models of 2D continuous-
discrete linear systems.

The second method (Theorem 4) require compu-
tation of values of functions (40) and (44) and there-
fore is simpler from the computation point of view.
Similar methods have been applied in [3], [4], [5] and
[6], respectively, to asymptotic stability analysis of 2D
continuous-discrete linear systems described by the
first and the second Fornasini-Marchesini type mod-
els and the Roesser type model.

The proposed methods can be applied to the
stability checking of the second Fornasini-Marchesini
model described by the state equation (1) with 4, = 0.
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