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Abstract:
Computer aided methods for inves ga on of the asymp-
to c stability of 2D discrete linear systems described by
the first Fornasini-Marchesinimodel are given. Themeth-
ods require computa on of eigenvalues of complex ma-
trices or values of complex func ons. Effec veness of the
stability tests are demonstrated on numerical examples.
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1. Introduc on
There are several models of 2D discrete linear sys-

tem [9, 11, 12]. The most popular is the Fornasini-
Marchesini model introduced in [9].

The problem of asymptotic stability of linear 2D
systems has considerable attention since about 40
years. For the stability analysis of these systems var-
iousmethods can be applied: analytical (similar to the
Schur stability test of 1D systems) [1], based on Lya-
punov stability theory [21, 22], based on LMI [8, 13,
23, 24], based on spectral radius [10, 17, 20, 25, 26],
frequency domainmethods [23] or algebraic methods
for positive systems [12, 13, 14, 15, 16, 19]. The analyt-
ical methods require symbolic computations whereas
the methods based on Lyapunov stability theory, LMI
or spectral radius give only suf icient but not neces-
sary conditions for stability of standard systems.

The main purpose of this paper is to present new
frequency domain necessary and suf icient conditions
for investigation of asymptotic stability of the irst
Fornasini-Marchesinimodel of 2D standard linear sys-
tems.

The following notation will be used: 𝑍 - the set of
non-negative integers;ℜ × - the set of 𝑛×𝑚 realma-
trices; 𝜆 {𝑋} − 𝑖-th eigenvalue of 𝑋.

2. Problem Formula on
Consider the state equation of the irst Fornasini-

Marchesini model of 2D linear system [9, 11, 12]

𝑥(𝑖 + 1, 𝑗 + 1) = 𝐴 𝑥(𝑖, 𝑗) + 𝐴 𝑥(𝑖 + 1, 𝑗)
+𝐴 𝑥(𝑖, 𝑗 + 1) + 𝐵𝑢(𝑖, 𝑗), 𝑖, 𝑗 ∈ 𝑍 , (1)

where 𝑥(𝑖, 𝑗) ∈ ℜ , 𝑢(𝑖, 𝑗) ∈ ℜ and 𝐴 , 𝐴 , 𝐴 ∈
ℜ × , 𝐵 ∈ ℜ × .

The boundary conditions for (1) are as follows

𝑥(𝑖, 0) = 𝑥 , 𝑥(0, 𝑗) = 𝑥 , 𝑖, 𝑗 ∈ 𝑍 . (2)

The characteristic matrix of the model (1) has the
form

𝐻(𝑧 , 𝑧 ) = 𝑧 𝑧 𝐼 − 𝐴 − 𝑧 𝐴 − 𝑧 𝐴 , (3)
where 𝑧 and 𝑧 are complex variables.

The characteristic function
𝑤(𝑧 , 𝑧 ) = det𝐻(𝑧 , 𝑧 )
= det[𝑧 𝑧 𝐼 − 𝐴 − 𝑧 𝐴 − 𝑧 𝐴 ] (4)

of the model (1) is a polynomial in two independent
variables 𝑧 and 𝑧 , of the form

𝑤(𝑧 , 𝑧 ) = 𝑎 𝑧 𝑧 , 𝑎 = 1. (5)

The model (1) is called asymptotically stable
(Schur stable) if for 𝑢(𝑖, 𝑗) ≡ 0 and bounded bound-
ary conditions (2) the condition 𝑥(𝑖, 𝑗) → 0 holds for
𝑖, 𝑗 → ∞.

From [1, 11] we have the following theorem.
Theorem 1. The model (1) is asymptotically stable if
and only if
𝑤(𝑧 , 𝑧 ) ≠ 0, ∀|𝑧 | ≥ 1 𝑎𝑛𝑑 ∀|𝑧 | ≥ 1. (6)
The polynomial (5) satisfying the condition (6) is

called discrete stable or Schur stable. Several algebraic
methods for asymptotic stability checking of such bi-
variate polynomials were given in [1].

Computational method for investigation of asymp-
totic stability of the Fornasini-Marchesini model (1)
has been given in [2]. This method requires computa-
tion of eigenvalue-loci of complex matrices.

The main purpose of this paper is to present new
computationalmethods for checking the condition (6)
of asymptotic stability of the model (1) which do not
require a priori knowledge of the characteristic bivari-
ate polynomial (5).

3. Solu on of the Problem
Theorem 2. The model (1) is asymptotically stable if
and only if the following two conditions hold:
𝑤(𝑒 , 𝑧 ) ≠ 0, |𝑧 | ≥ 1, ∀𝑦 ∈ [0, 2𝜋], 𝑗 = −1, (7)

𝑤(𝑧 , 𝑒 ) ≠ 0, |𝑧 | ≥ 1, ∀𝜔 ∈ [0, 2𝜋]. (8)

Proof. From [1, 2] it follows that (6) is equivalent to
the conditions

𝑤(𝑧 , 𝑧 ) ≠ 0, |𝑧 | = 1, |𝑧 | ≥ 1, (9)
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𝑤(𝑧 , 𝑧 ) ≠ 0, |𝑧 | ≥ 1, |𝑧 | = 1. (10)
It is easy to see that conditions (9) and (10) can be

written in the forms (7) and (8), respectively. �
Lemma 1. If the model (1) is asymptotically stable
then

|𝜆 (𝐴 )| < 1, 𝑖 = 1, 2, ..., 𝑛, (11)
and

|𝜆 (𝐴 )| < 1, 𝑖 = 1, 2, ..., 𝑛. (12)
Proof. From (1) for 𝐴 ≡ 0, 𝐴 ≡ 0 and 𝐵 ≡ 0 one ob-
tains the homogeneous state equation of the discrete-
time linear system

𝑥(𝑖 + 1, 𝑗 + 1) = 𝐴 𝑥(𝑖 + 1, 𝑗). (13)

The system (13) is asymptotically stable if andonly
if the condition (11) holds, i.e. the matrix 𝐴 is Schur
stable (is a Schur matrix).

Similarly, substitution of 𝐴 ≡ 0, 𝐴 ≡ 0 and
𝐵 ≡ 0 in (1) gives the homogeneous state equation
of discrete-time linear system

𝑥(𝑖 + 1, 𝑗 + 1) = 𝐴 𝑥(𝑖, 𝑗 + 1), (14)

which is asymptotically stable if and only if the condi-
tion (12) holds, i.e. the matrix 𝐴 is Schur stable (is a
Schur matrix).

Asymptotic stability of the model (1) with any
ixed triple of matrices 𝐴 , 𝐴 and 𝐴 means that the
condition (6) holds for this triple. In particular, asymp-
totic stability of the systemwith𝐴 ≡ 0 and𝐴 ≡ 0 (or
𝐴 ≡ 0 and 𝐴 ≡ 0) is equivalent to satisfaction of the
condition (6) for 𝐴 ≡ 0 and 𝐴 ≡ 0 (or 𝐴 ≡ 0 and
𝐴 ≡ 0). Hence, the conditions (11) and (12) are nec-
essary for asymptotic stability of the model (1). �

To show that the conditions (11) and (12) are not
suf icient, we consider the scalar system (1)with𝐴 =
0, 𝐴 = 0.5 ((11) and (12) hold) and 𝐴 = 1.
In this case the characteristic equation has the form
𝑧 𝑧 −0.5𝑧 −1 = 0.Fromthis equationwehave that if,
for example, 𝑧 = 0 then 𝑧 = −2 and if 𝑧 = 0.5 then
𝑧 = 2.5. This means that there exist such values of
roots of the characteristic equation which do not sat-
isfy the condition (6) and the system is unstable.

Using the rules for computing the determinant of
block matrices, we obtain that the characteristic ma-
trix (3) of the model (1) can be computed from one of
the following equivalent formulae

𝐻(𝑧 , 𝑧 ) = [𝑧 𝐼 − 𝐴 ][𝑧 𝐼 − 𝑆 (𝑧 )], (15)

𝐻(𝑧 , 𝑧 ) = [𝑧 𝐼 − 𝐴 ][𝑧 𝐼 − 𝑆 (𝑧 )], (16)
where

𝑆 (𝑧 ) = (𝑧 𝐼 − 𝐴 ) (𝐴 + 𝑧 𝐴 ), (17)

𝑆 (𝑧 ) = (𝑧 𝐼 − 𝐴 ) (𝐴 + 𝑧 𝐴 ). (18)
Using (4) and (15), (16) we can write

𝑤(𝑧 , 𝑧 ) = det[𝑧 𝐼 − 𝐴 ] det[𝑧 𝐼 − 𝑆 (𝑧 )], (19)

𝑤(𝑧 , 𝑧 ) = det[𝑧 𝐼 − 𝐴 ] det[𝑧 𝐼 − 𝑆 (𝑧 )]. (20)

From (15) for 𝑧 = 𝑒 we have

𝐻(𝑒 , 𝑧 ) = [𝑒 𝐼 − 𝐴 ][𝑧 𝐼 − 𝑆 (𝑒 )], (21)

where

𝑆 (𝑒 ) = (𝑒 𝐼 − 𝐴 ) (𝐴 + 𝑒 𝐴 ). (22)

Lemma 2. Let the necessary condition (12) be satis-
ied. The condition (7) holds if and only if all eigenval-
ues of the complex matrix (22) have absolute values
less than one for all 𝑦 ∈ 𝑌 = [0, 2𝜋].
Proof. From (21) we have

𝑤(𝑒 , 𝑧 ) = det[𝑒 𝐼 − 𝐴 ] det[𝑧 𝐼 − 𝑆 (𝑒 )].
(23)

If (12) holds then the matrix 𝐼 𝑒 − 𝐴 is non-
singular for all 𝑦 ∈ 𝑌. Hence, from (23) it follows that
the condition (7) is satis ied if and only if

det[𝑧 𝐼 − 𝑆 (𝑒 )] ≠ 0, |𝑧 | ≥ 1, ∀𝑦 ∈ 𝑌. (24)

Satisfaction of (24) means that all eigenvalues of
the complexmatrix (22)have absolute values less than
one for all 𝑦 ∈ 𝑌. �

Eigenvalue-loci of 𝑆 (𝑒 ) for 𝑦 ∈ [0, 𝜋] and for
𝑦 ∈ [𝜋, 2𝜋] are symmetric respect to the real axis
of the complex plane. Therefore, we can equivalently
consider in (24) the interval 𝑌 = [0, 𝜋] instead of the
interval 𝑌 = [0, 2𝜋].

From (16) for 𝑧 = 𝑒 we have

𝐻(𝑧 , 𝑒 ) = [𝑒 𝐼 − 𝐴 ][𝑧 𝐼 − 𝑆 (𝑒 )] (25)

and

𝑤(𝑧 , 𝑒 ) = det[𝑒 𝐼 − 𝐴 ] det[𝑧 𝐼 − 𝑆 (𝑒 )],
(26)

where

𝑆 (𝑒 ) = (𝑒 𝐼 − 𝐴 ) (𝐴 + 𝑒 𝐴 ). (27)

Lemma 3. Let the necessary condition (11) be satis-
ied. The condition (8) holds if and only if all eigenval-
ues of the complex matrix (27) have absolute values
less than one for all 𝜔 ∈ Ω = [0, 2𝜋].
Proof. If (11) holds then thematrix 𝑒 𝐼 −𝐴 is non-
singular for all𝜔 ∈ Ω. From (26) we have that the con-
dition (8) is satis ied if and only if

det[𝑧 𝐼 − 𝑆 (𝑒 )] ≠ 0, |𝑧 | ≥ 1, ∀𝜔 ∈ Ω, (28)

i.e. all eigenvalues of thematrix (27) have absolute val-
ues less than one for all 𝜔 ∈ Ω. �

Similarly as in Lemma 2, we can equivalently con-
sider the interval Ω = [0, 𝜋] instead of the interval
Ω = [0, 2𝜋].

The conditions of Lemmas 2 and 3 can be written
in the following forms

|𝜆 {𝑆 (𝑒 )}| < 1, ∀𝑦 ∈ 𝑌, 𝑖 = 1, 2, ..., 𝑛 (29)
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and

|𝜆 {𝑆 (𝑒 )}| < 1, ∀𝜔 ∈ Ω, 𝑖 = 1, 2, ..., 𝑛, (30)

respectively.
Theorem 3. The model (1) is asymptotically stable if
and only if the conditions (11), (12), (29) and (30) are
satis ied.
Proof. The proof follows directly from Theorem 2 and
Lemmas 1, 2 and 3. �

Computational methods for checking the con-
ditions (29) and (30) for the Fornasini-Marchesini
model (1), based on the eigenvalues-loci of the matri-
ces (22) and (27), are given in [2].

It is easy to see that the conditions (29) and (30)
can be written in the forms: 𝜂(𝑦) > 0 for all 𝑦 ∈ 𝑌 and
𝜇(𝜔) > 0 for all 𝜔 ∈ Ω,where

𝜂(𝑦) = 1 − max
,...,

|𝜆 {𝑆 (𝑒 )}|, (31)

𝜇(𝜔) = 1 − max
,...,

|𝜆 {𝑆 (𝑒 )}|. (32)

Hence, from Theorem 3 one obtains the following
lemma.
Lemma 4. Let the necessary conditions (11), (12)
hold. Themodel (1) is asymptotically stable if and only
if 𝜂(𝑦) > 0 for all 𝑦 ∈ 𝑌 and 𝜇(𝜔) > 0 for all 𝜔 ∈ Ω or
equivalently, the conditions

𝜂 = min
∈

𝜂(𝑦) > 0, 𝜇 = min
∈Ω

𝜇(𝜔) > 0, (33)

are satis ied.
Example 1. Consider the model (1) with thematrices

𝐴 =
−0.3 0.1 −0.4
0.4 −0.1 0
0 0.3 −0.2

,

𝐴 =
0.1 −0.2 0
0 0.4 0.3
0.1 0.3 0.1

,

𝐴 =
0.3 0.1 −0.2
0 0.2 0.1
−0.3 −0.2 0.4

.

(34)

Computing eigenvalues of 𝐴 and 𝐴 we obtain
- eigenvalues of 𝐴 : -0.1233; 0.1577; 0.5656.
- eigenvalues of 𝐴 : 0.1166; 0.2343; 0.5491.

Hence, the necessary conditions (11) and (12)
hold, i.e. the matrices 𝐴 and 𝐴 are Schur stable.

Plots of the functions 𝜂(𝑦) (𝑦 ∈ 𝑌) and 𝜇(𝜔) (𝜔 ∈
Ω) are shown in Figure 1. By ‘o’ are denoted the end-
points of the plots. The ranges 𝑌 = [0, 2𝜋] and Ω =
[0, 2𝜋] were digitized with the steps Δ𝑦 = 0.01𝜋 and
Δ𝜔 = 0.01𝜋.

From Figure 1 and also from the fact that 𝜂 =
0.3012 > 0 and 𝜇 = 0.2737 > 0 it follows that the
conditions of Lemma 4 are satis ied and the model is
asymptotically stable. �

Checking the conditions of Theorem 3 and Lemma
4 require computation of eigenvalues of the matrices
(22) and (27). This may be inconvenient with respect

0 1 2 3 4 5 6 7
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Fig. 1. Plots of the func ons (31) (curve 1) and (32)
(curve 2) for 𝑦 = 𝜔 ∈ [0, 2𝜋]

to computational problems, particularly in the case of
ill conditioned matrices. Therefore, we present a new
method for investigation of asymptotic stability of the
model (1) which require computation only determi-
nants of some matrices, not eigenvalues.

Consider the polynomial

𝑤 (𝑒 , 𝑧 ) = det(𝑧 𝐼 − 𝑆 (𝑒 )), (35)

where the matrix 𝑆 (𝑒 ) is de ined by (22). From the
classical Mikhailov theorem (see for example [18]) it
follows that the condition (24) holds if and only if for
any ixed 𝑦 ∈ 𝑌 plot of 𝑤 (𝑒 , 𝑒 ) for 𝜔 ∈ Ω encir-
cles in the positive direction 𝑛 times the origin of the
complex plane.

Direct application of the Mikhailov theorem to
checking the condition (24) is not practically reliable
for a large values of 𝑛. Therefore, we introduce the ra-
tional function

𝜙 (𝑒 , 𝑒 ) = 𝑤 (𝑒 , 𝑒 )
𝑤 (𝑒 ) , 𝑦 ∈ 𝑌, (36)

instead of 𝑤 (𝑒 , 𝑒 ), where 𝑤 (𝑧 ) is any Schur
stable polynomial of degree 𝑛.
Lemma 5. The condition (29) holds if and only if for
all ixed 𝜔 ∈ Ω plot of the function (36) does not en-
circle or cross the origin of the complex plane.
Proof. If the reference polynomial 𝑤 (𝑧 ) is Schur
stable then from the Argument Principle we have

Δ arg
∈Ω

𝑤 (𝑒 ) = 𝑛. (37)

From (36) it follows that for any ixed 𝑦 ∈ 𝑌

Δ arg ∈Ω 𝜙 (𝑒 , 𝑒 ) = Δ arg ∈Ω𝑤 (𝑒 , 𝑒 )
−Δ arg ∈Ω𝑤 (𝑒 ).

(38)

The matrix (22) for any ixed 𝑦 ∈ 𝑌 is Schur stable
if and only if

Δ arg
∈[ , ]

𝑤 (𝑒 , 𝑒 ) = Δ arg
∈[ , ]

𝑤 (𝑒 ) = 𝑛,
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which holds if and only if Δ arg ∈Ω 𝜙 (𝑒 , 𝑒 ) = 0.
Taking into account all 𝑦 ∈ 𝑌, we obtain that the

above holds if and only if for all ixed 𝜔 ∈ Ω plot of
(36) as a function of 𝑦 ∈ 𝑌 does not encircle or cross
the origin of the complex plane. �

The reference polynomial 𝑤 (𝑧 ) can be chosen
in the form

𝑤 (1, 𝑧 ) = det(𝑧 𝐼 − 𝑆 (1)), (39)

where 𝑆 (1) = (𝐼 − 𝐴 ) (𝐴 + 𝐴 ), which we get
from (35) and (22) substituting 𝑦 = 0. Schur stabil-
ity of (39) is necessary for Schur stability of complex
polynomial (35) for all 𝑦 ∈ 𝑌.

If𝑤 (𝑧 ) = 𝑤 (1, 𝑧 ), then

𝜙 (𝑒 , 𝑒 ) = 𝑤 (𝑒 , 𝑒 )
𝑤 (1, 𝑒 ) , 𝑦 ∈ 𝑌. (40)

Plot of (40) as a function of 𝑦 ∈ 𝑌 (with any ixed
𝜔 ∈ Ω) is a closed curve. It beginswith 𝑦 = 0 and ends
with 𝑦 = 2𝜋 in the point 𝜙 (1, 𝑒 ) = 1.

Now, we consider the complex polynomial

𝑤 (𝑧 , 𝑒 ) = det(𝑧 𝐼 − 𝑆 (𝑒 )), (41)

where the matrix 𝑆 (𝑒 ) is de ined by (27).
Let 𝑤 (𝑧 ) be any Schur stable polynomial of de-

gree 𝑛.
Proceeding similarly as in the case of Lemma 5, we

obtain the following lemma.
Lemma 6. The condition (30) holds if and only if for
all ixed 𝑦 ∈ 𝑌 plot of the function

𝜙 (𝑒 , 𝑒 ) = 𝑤 (𝑒 , 𝑒 )
𝑤 (𝑒 ) , 𝜔 ∈ Ω, (42)

does not encircle or cross the origin of the complex
plane, where 𝑤 (𝑒 , 𝑒 ) has the form (41) for 𝑧 =
𝑒 .

The reference polynomial 𝑤 (𝑧 ) can be chosen
in the form

𝑤 (𝑧 , 1) = det(𝑧 𝐼 − 𝑆 (1)), (43)

where 𝑆 (1) = (𝐼 − 𝐴 ) (𝐴 + 𝐴 ). Schur stability
of (43) is necessary for Schur stability of the complex
polynomial (41) for all 𝜔 ∈ Ω.

If𝑤 (𝑧 ) = 𝑤 (𝑧 , 1), then

𝜙 (𝑒 , 𝑒 ) = 𝑤 (𝑒 , 𝑒 )
𝑤 (𝑒 , 1) , 𝜔 ∈ Ω. (44)

Plot of (44) as a function of 𝜔 ∈ Ω with the ixed
𝑦 ∈ 𝑌 is a closed curve. It begins with 𝜔 = 0 and ends
with 𝜔 = 2𝜋 in the point 𝜙 (𝑒 , 1) = 1.

From Theorem 3 and Lemmas 5 and 6 we have the
following theorem.
Theorem 4. Assume that the necessary conditions
(11) and (12) are satis ied and the polynomials (39)
and (43) are Schur stable. The model (1) is asymptot-
ically stable if and only if the following two conditions
hold:

1) plots of the function (40) do not encircle or cross
the origin of the complex plane for all ixed 𝜔 ∈ Ω,

2) plots of the function (44) do not encircle or cross
the origin of the complex plane for all ixed 𝑦 ∈ 𝑌.
Applying computational method given in Theorem

4we can take into consideration the following remark.
Remark. Refer to point 1) of Theorem 4, one should
set any ixed 𝜔 ∈ Ω, determined with appropriately
small stepΔ𝜔, and drawplots of the function (40) sep-
arately digitizing the range 𝑌 with a suf iciently small
step Δ𝑦. For point 2) of Theorem 4 one should set any
ixed 𝑦 ∈ 𝑌, determined with appropriately small step
Δ𝑦, and draw plots of the function (44) separately dig-
itizing the range Ω with a suf iciently small step Δ𝜔.
Plots should be smooth especially near the origin of
the complexplane so that the important parts havenot
been neglected.
Example 2.Using Theorem 4 check asymptotic stabil-
ity of the model (1) with the matrices (34).

In Example 1 it has been shown that the necessary
conditions (11) and (12) hold.

Computing eigenvalues of the matrices 𝑆 (1) =
(𝐼 −𝐴 ) (𝐴 +𝐴 ) and 𝑆 (1) = (𝐼 −𝐴 ) (𝐴 +𝐴 )
we obtain respectively:

𝜆 = 0.4201 + 𝑗0.2872,
𝜆 = 0.4201 − 𝑗0.2872,

𝜆 = −0.6204,
(45)

𝜆 = 0.4762 + 𝑗0.2152,
𝜆 = 0.4762 − 𝑗0.2152,

𝜆 = −0.5703.
(46)

Moduli of all eigenvalues (45) and (46) are less
than one and the reference polynomials (39) and (43)
are Schur stable.

Plots of (40) and (44) are shown in Figures 2 and3,
respectively. The ranges Ω = [0, 2𝜋] and 𝑌 = [0, 2𝜋]
for all plots was digitized with the steps Δ𝑦 = 0.01𝜋
and Δ𝜔 = 0.01𝜋.
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Fig. 2. Plots of (40)
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Fig. 3. Plots of (44)

From Figures 2 and 3 is follows that the plots do
not encircle the origin of the complex plane for all 𝑦 ∈
𝑌 and𝜔 ∈ Ω.Thismeans, according to Theorem4, that
the model (1), (34) is Schur stable. �

Now we consider the 1st order Fornasini-
Marchesini model described by the equation

𝑥(𝑖 + 1, 𝑗 + 1) = 𝑎 𝑥(𝑖, 𝑗) + 𝑎 𝑥(𝑖 + 1, 𝑗)
+𝑎 𝑥(𝑖, 𝑗 + 1) + 𝑏𝑢(𝑖, 𝑗), (47)

where 𝑎 , 𝑎 , 𝑎 and 𝑏 are real coef icients.
For the system (47) the necessary conditions (11)

and (12) take the forms

|𝑎 | < 1, |𝑎 | < 1. (48)

The matrix (22) for the system has the form

𝑆 (𝑒 ) = 𝑎 + 𝑒 𝑎
𝑒 − 𝑎 . (49)

It is easy to check that plot of (49) for 𝑦 ∈ 𝑌 =
[0, 2𝜋] is a circlewith the center at real axis. This circle
crosses real axis in points

𝑆 = 𝑆 (𝑒 ) = 𝑎 + 𝑎
1 − 𝑎 , 𝑆 = 𝑆 (𝑒 ) = 𝑎 − 𝑎

1 + 𝑎 .

Hence, the irst condition (33) holds if and only if

𝜂 = 1 −max {|𝑆 | , |𝑆 |} > 0. (50)

Similarly, we can show that the second condition
(33) holds if and only if

𝜇 = 1 −max {|𝑆 | , |𝑆 |} > 0, (51)

where

𝑆 = 𝑆 (𝑒 ) = 𝑎 + 𝑎
1 − 𝑎 , 𝑆 = 𝑆 (𝑒 ) = 𝑎 − 𝑎

1 + 𝑎 .

From the above andTheorem3wehave the follow-
ing condition.
Lemma 7. The 1st order Fornasini-Marchesini model
(47) is asymptotically stable if and only if the condi-
tions (48) and (50), (51) are satis ied.

4. Concluding Remarks
Simple necessary conditions (Lemma 1) and two

computational methods for investigation of asymp-
totic stability of the irst Fornasini-Marchesini model
(1) of 2D discrete linear systems have been given.

The irst method (Theorem 3, Lemma 4) require
computation of eigenvalues of complex matrices (22)
and (27). Similarmethods have been applied in [7, 23]
to asymptotic stability analysis of the Roesser model
of 2D systems and in [3] for the Fornasini-Marchesini
and the Roesser type models of 2D continuous-
discrete linear systems.

The second method (Theorem 4) require compu-
tation of values of functions (40) and (44) and there-
fore is simpler from the computation point of view.
Similar methods have been applied in [3], [4], [5] and
[6], respectively, to asymptotic stability analysis of 2D
continuous-discrete linear systems described by the
irst and the second Fornasini-Marchesini type mod-
els and the Roesser type model.

The proposed methods can be applied to the
stability checking of the second Fornasini-Marchesini
model describedby the state equation (1)with𝐴 ≡ 0.
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