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Abstract:
Computer aided methods for invesƟgaƟon of the asymp-
toƟc stability of 2D discrete linear systems described by
the first Fornasini-Marchesinimodel are given. Themeth-
ods require computaƟon of eigenvalues of complex ma-
trices or values of complex funcƟons. EffecƟveness of the
stability tests are demonstrated on numerical examples.
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1. IntroducƟon
There are several models of 2D discrete linear sys-

tem [9, 11, 12]. The most popular is the Fornasini-
Marchesini model introduced in [9].

The problem of asymptotic stability of linear 2D
systems has considerable attention since about 40
years. For the stability analysis of these systems var-
iousmethods can be applied: analytical (similar to the
Schur stability test of 1D systems) [1], based on Lya-
punov stability theory [21, 22], based on LMI [8, 13,
23, 24], based on spectral radius [10, 17, 20, 25, 26],
frequency domainmethods [23] or algebraic methods
for positive systems [12, 13, 14, 15, 16, 19]. The analyt-
ical methods require symbolic computations whereas
the methods based on Lyapunov stability theory, LMI
or spectral radius give only sufϐicient but not neces-
sary conditions for stability of standard systems.

The main purpose of this paper is to present new
frequency domain necessary and sufϐicient conditions
for investigation of asymptotic stability of the ϐirst
Fornasini-Marchesinimodel of 2D standard linear sys-
tems.

The following notation will be used: 𝑍ା- the set of
non-negative integers;ℜ௡×௠ - the set of 𝑛×𝑚 realma-
trices; 𝜆௜{𝑋} − 𝑖-th eigenvalue of 𝑋.

2. Problem FormulaƟon
Consider the state equation of the ϐirst Fornasini-

Marchesini model of 2D linear system [9, 11, 12]

𝑥(𝑖 + 1, 𝑗 + 1) = 𝐴଴𝑥(𝑖, 𝑗) + 𝐴ଵ𝑥(𝑖 + 1, 𝑗)
+𝐴ଶ𝑥(𝑖, 𝑗 + 1) + 𝐵𝑢(𝑖, 𝑗), 𝑖, 𝑗 ∈ 𝑍ା,

(1)

where 𝑥(𝑖, 𝑗) ∈ ℜ௡ , 𝑢(𝑖, 𝑗) ∈ ℜ௠ and 𝐴଴, 𝐴ଵ, 𝐴ଶ ∈
ℜ௡×௡ , 𝐵 ∈ ℜ௡×௠ .

The boundary conditions for (1) are as follows

𝑥(𝑖, 0) = 𝑥௜଴, 𝑥(0, 𝑗) = 𝑥଴௝ , 𝑖, 𝑗 ∈ 𝑍ା. (2)

The characteristic matrix of the model (1) has the
form

𝐻(𝑧ଵ, 𝑧ଶ) = 𝑧ଵ𝑧ଶ𝐼௡ − 𝐴଴ − 𝑧ଵ𝐴ଵ − 𝑧ଶ𝐴ଶ, (3)
where 𝑧ଵ and 𝑧ଶ are complex variables.

The characteristic function
𝑤(𝑧ଵ, 𝑧ଶ) = det𝐻(𝑧ଵ, 𝑧ଶ)
= det[𝑧ଵ𝑧ଶ𝐼௡ − 𝐴଴ − 𝑧ଵ𝐴ଵ − 𝑧ଶ𝐴ଶ]

(4)

of the model (1) is a polynomial in two independent
variables 𝑧ଵ and 𝑧ଶ, of the form

𝑤(𝑧ଵ, 𝑧ଶ) =
௡

෍
௞ୀ଴

௡

෍
௟ୀ଴

𝑎௞௟𝑧௞ଵ𝑧௟ଶ, 𝑎௡௡ = 1. (5)

The model (1) is called asymptotically stable
(Schur stable) if for 𝑢(𝑖, 𝑗) ≡ 0 and bounded bound-
ary conditions (2) the condition 𝑥(𝑖, 𝑗) → 0 holds for
𝑖, 𝑗 → ∞.

From [1, 11] we have the following theorem.
Theorem 1. The model (1) is asymptotically stable if
and only if
𝑤(𝑧ଵ, 𝑧ଶ) ≠ 0, ∀|𝑧ଵ| ≥ 1 𝑎𝑛𝑑 ∀|𝑧ଶ| ≥ 1. (6)
The polynomial (5) satisfying the condition (6) is

called discrete stable or Schur stable. Several algebraic
methods for asymptotic stability checking of such bi-
variate polynomials were given in [1].

Computational method for investigation of asymp-
totic stability of the Fornasini-Marchesini model (1)
has been given in [2]. This method requires computa-
tion of eigenvalue-loci of complex matrices.

The main purpose of this paper is to present new
computationalmethods for checking the condition (6)
of asymptotic stability of the model (1) which do not
require a priori knowledge of the characteristic bivari-
ate polynomial (5).

3. SoluƟon of the Problem
Theorem 2. The model (1) is asymptotically stable if
and only if the following two conditions hold:
𝑤(𝑒௝௬ , 𝑧ଶ) ≠ 0, |𝑧ଶ| ≥ 1, ∀𝑦 ∈ [0, 2𝜋], 𝑗ଶ = −1, (7)

𝑤(𝑧ଵ, 𝑒௝ఠ) ≠ 0, |𝑧ଵ| ≥ 1, ∀𝜔 ∈ [0, 2𝜋]. (8)

Proof. From [1, 2] it follows that (6) is equivalent to
the conditions

𝑤(𝑧ଵ, 𝑧ଶ) ≠ 0, |𝑧ଵ| = 1, |𝑧ଶ| ≥ 1, (9)
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𝑤(𝑧ଵ, 𝑧ଶ) ≠ 0, |𝑧ଵ| ≥ 1, |𝑧ଶ| = 1. (10)
It is easy to see that conditions (9) and (10) can be

written in the forms (7) and (8), respectively. �
Lemma 1. If the model (1) is asymptotically stable
then

|𝜆௜(𝐴ଵ)| < 1, 𝑖 = 1, 2, ..., 𝑛, (11)
and

|𝜆௜(𝐴ଶ)| < 1, 𝑖 = 1, 2, ..., 𝑛. (12)
Proof. From (1) for 𝐴଴ ≡ 0, 𝐴ଶ ≡ 0 and 𝐵 ≡ 0 one ob-
tains the homogeneous state equation of the discrete-
time linear system

𝑥(𝑖 + 1, 𝑗 + 1) = 𝐴ଵ𝑥(𝑖 + 1, 𝑗). (13)

The system (13) is asymptotically stable if andonly
if the condition (11) holds, i.e. the matrix 𝐴ଵ is Schur
stable (is a Schur matrix).

Similarly, substitution of 𝐴଴ ≡ 0, 𝐴ଵ ≡ 0 and
𝐵 ≡ 0 in (1) gives the homogeneous state equation
of discrete-time linear system

𝑥(𝑖 + 1, 𝑗 + 1) = 𝐴ଶ𝑥(𝑖, 𝑗 + 1), (14)

which is asymptotically stable if and only if the condi-
tion (12) holds, i.e. the matrix 𝐴ଶ is Schur stable (is a
Schur matrix).

Asymptotic stability of the model (1) with any
ϐixed triple of matrices 𝐴଴, 𝐴ଵ and 𝐴ଶ means that the
condition (6) holds for this triple. In particular, asymp-
totic stability of the systemwith𝐴଴ ≡ 0 and𝐴ଶ ≡ 0 (or
𝐴଴ ≡ 0 and 𝐴ଵ ≡ 0) is equivalent to satisfaction of the
condition (6) for 𝐴଴ ≡ 0 and 𝐴ଶ ≡ 0 (or 𝐴଴ ≡ 0 and
𝐴ଵ ≡ 0). Hence, the conditions (11) and (12) are nec-
essary for asymptotic stability of the model (1). �

To show that the conditions (11) and (12) are not
sufϐicient, we consider the scalar system (1)with𝐴ଵ =
0, 𝐴ଶ = 0.5 ((11) and (12) hold) and 𝐴଴ = 1.
In this case the characteristic equation has the form
𝑧ଵ𝑧ଶ−0.5𝑧ଶ−1 = 0.Fromthis equationwehave that if,
for example, 𝑧ଵ = 0 then 𝑧ଶ = −2 and if 𝑧ଶ = 0.5 then
𝑧ଵ = 2.5. This means that there exist such values of
roots of the characteristic equation which do not sat-
isfy the condition (6) and the system is unstable.

Using the rules for computing the determinant of
block matrices, we obtain that the characteristic ma-
trix (3) of the model (1) can be computed from one of
the following equivalent formulae

𝐻(𝑧ଵ, 𝑧ଶ) = [𝑧ଵ𝐼௡ − 𝐴ଶ][𝑧ଶ𝐼௡ − 𝑆ଵ(𝑧ଵ)], (15)

𝐻(𝑧ଵ, 𝑧ଶ) = [𝑧ଶ𝐼௡ − 𝐴ଵ][𝑧ଵ𝐼௡ − 𝑆ଶ(𝑧ଶ)], (16)
where

𝑆ଵ(𝑧ଵ) = (𝑧ଵ𝐼௡ − 𝐴ଶ)ିଵ(𝐴଴ + 𝑧ଵ𝐴ଵ), (17)

𝑆ଶ(𝑧ଶ) = (𝑧ଶ𝐼௡ − 𝐴ଵ)ିଵ(𝐴଴ + 𝑧ଶ𝐴ଶ). (18)
Using (4) and (15), (16) we can write

𝑤(𝑧ଵ, 𝑧ଶ) = det[𝑧ଵ𝐼௡ − 𝐴ଶ] det[𝑧ଶ𝐼௡ − 𝑆ଵ(𝑧ଵ)], (19)

𝑤(𝑧ଵ, 𝑧ଶ) = det[𝑧ଶ𝐼௡ − 𝐴ଵ] det[𝑧ଵ𝐼௡ − 𝑆ଶ(𝑧ଶ)]. (20)

From (15) for 𝑧ଵ = 𝑒௝௬ we have

𝐻(𝑒௝௬ , 𝑧ଶ) = [𝑒௝௬𝐼௡ − 𝐴ଶ][𝑧ଶ𝐼௡ − 𝑆ଵ(𝑒௝௬)], (21)

where

𝑆ଵ(𝑒௝௬) = (𝑒௝௬𝐼௡ − 𝐴ଶ)ିଵ(𝐴଴ + 𝑒௝௬𝐴ଵ). (22)

Lemma 2. Let the necessary condition (12) be satis-
ϐied. The condition (7) holds if and only if all eigenval-
ues of the complex matrix (22) have absolute values
less than one for all 𝑦 ∈ 𝑌 = [0, 2𝜋].
Proof. From (21) we have

𝑤(𝑒௝௬ , 𝑧ଶ) = det[𝑒௝௬𝐼௡ − 𝐴ଶ] det[𝑧ଶ𝐼௡ − 𝑆ଵ(𝑒௝௬)].
(23)

If (12) holds then the matrix 𝐼௡𝑒௝௬ − 𝐴ଶ is non-
singular for all 𝑦 ∈ 𝑌. Hence, from (23) it follows that
the condition (7) is satisϐied if and only if

det[𝑧ଶ𝐼௡ − 𝑆ଵ(𝑒௝௬)] ≠ 0, |𝑧ଶ| ≥ 1, ∀𝑦 ∈ 𝑌. (24)

Satisfaction of (24) means that all eigenvalues of
the complexmatrix (22)have absolute values less than
one for all 𝑦 ∈ 𝑌. �

Eigenvalue-loci of 𝑆ଵ(𝑒௝௬) for 𝑦 ∈ [0, 𝜋] and for
𝑦 ∈ [𝜋, 2𝜋] are symmetric respect to the real axis
of the complex plane. Therefore, we can equivalently
consider in (24) the interval 𝑌 = [0, 𝜋] instead of the
interval 𝑌 = [0, 2𝜋].

From (16) for 𝑧ଶ = 𝑒௝ఠ we have

𝐻(𝑧ଵ, 𝑒௝ఠ) = [𝑒௝ఠ𝐼௡ − 𝐴ଵ][𝑧ଵ𝐼௡ − 𝑆ଶ(𝑒௝ఠ)] (25)

and

𝑤(𝑧ଵ, 𝑒௝ఠ) = det[𝑒௝ఠ𝐼௡ − 𝐴ଵ] det[𝑧ଵ𝐼௡ − 𝑆ଶ(𝑒௝ఠ)],
(26)

where

𝑆ଶ(𝑒௝ఠ) = (𝑒௝ఠ𝐼௡ − 𝐴ଵ)ିଵ(𝐴଴ + 𝑒௝ఠ𝐴ଶ). (27)

Lemma 3. Let the necessary condition (11) be satis-
ϐied. The condition (8) holds if and only if all eigenval-
ues of the complex matrix (27) have absolute values
less than one for all 𝜔 ∈ Ω = [0, 2𝜋].
Proof. If (11) holds then thematrix 𝑒௝ఠ𝐼௡−𝐴ଵ is non-
singular for all𝜔 ∈ Ω. From (26) we have that the con-
dition (8) is satisϐied if and only if

det[𝑧ଵ𝐼௡ −𝑆ଶ(𝑒௝ఠ)] ≠ 0, |𝑧ଵ| ≥ 1, ∀𝜔 ∈ Ω, (28)

i.e. all eigenvalues of thematrix (27) have absolute val-
ues less than one for all 𝜔 ∈ Ω. �

Similarly as in Lemma 2, we can equivalently con-
sider the interval Ω = [0, 𝜋] instead of the interval
Ω = [0, 2𝜋].

The conditions of Lemmas 2 and 3 can be written
in the following forms

|𝜆௜{𝑆ଵ(𝑒௝௬)}| < 1, ∀𝑦 ∈ 𝑌, 𝑖 = 1, 2, ..., 𝑛 (29)
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and

|𝜆௜{𝑆ଶ(𝑒௝ఠ)}| < 1, ∀𝜔 ∈ Ω, 𝑖 = 1, 2, ..., 𝑛, (30)

respectively.
Theorem 3. The model (1) is asymptotically stable if
and only if the conditions (11), (12), (29) and (30) are
satisϐied.
Proof. The proof follows directly from Theorem 2 and
Lemmas 1, 2 and 3. �

Computational methods for checking the con-
ditions (29) and (30) for the Fornasini-Marchesini
model (1), based on the eigenvalues-loci of the matri-
ces (22) and (27), are given in [2].

It is easy to see that the conditions (29) and (30)
can be written in the forms: 𝜂(𝑦) > 0 for all 𝑦 ∈ 𝑌 and
𝜇(𝜔) > 0 for all 𝜔 ∈ Ω,where

𝜂(𝑦) = 1 − max
௜ୀଵ,...,௡

|𝜆௜{𝑆ଵ(𝑒௝௬)}|, (31)

𝜇(𝜔) = 1 − max
௜ୀଵ,...,௡

|𝜆௜{𝑆ଶ(𝑒௝ఠ)}|. (32)

Hence, from Theorem 3 one obtains the following
lemma.
Lemma 4. Let the necessary conditions (11), (12)
hold. Themodel (1) is asymptotically stable if and only
if 𝜂(𝑦) > 0 for all 𝑦 ∈ 𝑌 and 𝜇(𝜔) > 0 for all 𝜔 ∈ Ω or
equivalently, the conditions

𝜂୫୧୬ = min
௬∈௒

𝜂(𝑦) > 0, 𝜇୫୧୬ = min
ఠ∈Ω

𝜇(𝜔) > 0, (33)

are satisϐied.
Example 1. Consider the model (1) with thematrices

𝐴଴ = ቎
−0.3 0.1 −0.4
0.4 −0.1 0
0 0.3 −0.2

቏ ,

𝐴ଵ = ቎
0.1 −0.2 0
0 0.4 0.3
0.1 0.3 0.1

቏ ,

𝐴ଶ = ቎
0.3 0.1 −0.2
0 0.2 0.1
−0.3 −0.2 0.4

቏ .

(34)

Computing eigenvalues of 𝐴ଵ and 𝐴ଶ we obtain
- eigenvalues of 𝐴ଵ: -0.1233; 0.1577; 0.5656.
- eigenvalues of 𝐴ଶ: 0.1166; 0.2343; 0.5491.

Hence, the necessary conditions (11) and (12)
hold, i.e. the matrices 𝐴ଵ and 𝐴ଶ are Schur stable.

Plots of the functions 𝜂(𝑦) (𝑦 ∈ 𝑌) and 𝜇(𝜔) (𝜔 ∈
Ω) are shown in Figure 1. By ‘o’ are denoted the end-
points of the plots. The ranges 𝑌 = [0, 2𝜋] and Ω =
[0, 2𝜋] were digitized with the steps Δ𝑦 = 0.01𝜋 and
Δ𝜔 = 0.01𝜋.

From Figure 1 and also from the fact that 𝜂୫୧୬ =
0.3012 > 0 and 𝜇୫୧୬ = 0.2737 > 0 it follows that the
conditions of Lemma 4 are satisϐied and the model is
asymptotically stable. �

Checking the conditions of Theorem 3 and Lemma
4 require computation of eigenvalues of the matrices
(22) and (27). This may be inconvenient with respect

0 1 2 3 4 5 6 7
0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

y, ω

η,
 µ

1

2

Fig. 1. Plots of the funcƟons (31) (curve 1) and (32)
(curve 2) for 𝑦 = 𝜔 ∈ [0, 2𝜋]

to computational problems, particularly in the case of
ill conditioned matrices. Therefore, we present a new
method for investigation of asymptotic stability of the
model (1) which require computation only determi-
nants of some matrices, not eigenvalues.

Consider the polynomial

𝑤ଵ(𝑒௝௬ , 𝑧ଶ) = det(𝑧ଶ𝐼௡ − 𝑆ଵ(𝑒௝௬)), (35)

where the matrix 𝑆ଵ(𝑒௝௬) is deϐined by (22). From the
classical Mikhailov theorem (see for example [18]) it
follows that the condition (24) holds if and only if for
any ϐixed 𝑦 ∈ 𝑌 plot of 𝑤ଵ(𝑒௝௬ , 𝑒௝ఠ) for 𝜔 ∈ Ω encir-
cles in the positive direction 𝑛 times the origin of the
complex plane.

Direct application of the Mikhailov theorem to
checking the condition (24) is not practically reliable
for a large values of 𝑛. Therefore, we introduce the ra-
tional function

𝜙ଵ(𝑒௝௬ , 𝑒௝ఠ) =
𝑤ଵ(𝑒௝௬ , 𝑒௝ఠ)
𝑤ଵ௢(𝑒௝ఠ)

, 𝑦 ∈ 𝑌, (36)

instead of 𝑤ଵ(𝑒௝௬ , 𝑒௝ఠ), where 𝑤ଵ௢(𝑧ଶ) is any Schur
stable polynomial of degree 𝑛.
Lemma 5. The condition (29) holds if and only if for
all ϐixed 𝜔 ∈ Ω plot of the function (36) does not en-
circle or cross the origin of the complex plane.
Proof. If the reference polynomial 𝑤ଵ௢(𝑧ଶ) is Schur
stable then from the Argument Principle we have

Δ arg
ఠ∈Ω

𝑤ଵ௢(𝑒௝ఠ) = 𝑛. (37)

From (36) it follows that for any ϐixed 𝑦 ∈ 𝑌

Δ argఠ∈Ω 𝜙ଵ(𝑒௝௬ , 𝑒௝ఠ) = Δ argఠ∈Ω𝑤ଵ(𝑒௝௬ , 𝑒௝ఠ)
−Δ argఠ∈Ω𝑤ଵ௢(𝑒௝ఠ).

(38)

The matrix (22) for any ϐixed 𝑦 ∈ 𝑌 is Schur stable
if and only if

Δ arg
ఠ∈[଴,ଶగ]

𝑤ଵ(𝑒௝௬ , 𝑒௝ఠ) = Δ arg
ఠ∈[଴,ଶగ]

𝑤ଵ௢(𝑒௝ఠ) = 𝑛,
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which holds if and only if Δ argఠ∈Ω 𝜙ଵ(𝑒௝௬ , 𝑒௝ఠ) = 0.
Taking into account all 𝑦 ∈ 𝑌, we obtain that the

above holds if and only if for all ϐixed 𝜔 ∈ Ω plot of
(36) as a function of 𝑦 ∈ 𝑌 does not encircle or cross
the origin of the complex plane. �

The reference polynomial 𝑤ଵ௢(𝑧ଶ) can be chosen
in the form

𝑤ଵ(1, 𝑧ଶ) = det(𝑧ଶ𝐼௡ − 𝑆ଵ(1)), (39)

where 𝑆ଵ(1) = (𝐼௡ − 𝐴ଶ)ିଵ(𝐴଴ + 𝐴ଵ), which we get
from (35) and (22) substituting 𝑦 = 0. Schur stabil-
ity of (39) is necessary for Schur stability of complex
polynomial (35) for all 𝑦 ∈ 𝑌.

If𝑤ଵ௢(𝑧ଶ) = 𝑤ଵ(1, 𝑧ଶ), then

𝜙ଵ(𝑒௝௬ , 𝑒௝ఠ) =
𝑤ଵ(𝑒௝௬ , 𝑒௝ఠ)
𝑤ଵ(1, 𝑒௝ఠ)

, 𝑦 ∈ 𝑌. (40)

Plot of (40) as a function of 𝑦 ∈ 𝑌 (with any ϐixed
𝜔 ∈ Ω) is a closed curve. It beginswith 𝑦 = 0 and ends
with 𝑦 = 2𝜋 in the point 𝜙ଵ(1, 𝑒௝ఠ) = 1.

Now, we consider the complex polynomial

𝑤ଶ(𝑧ଵ, 𝑒௝ఠ) = det(𝑧ଵ𝐼௡ − 𝑆ଶ(𝑒௝ఠ)), (41)

where the matrix 𝑆ଶ(𝑒௝ఠ) is deϐined by (27).
Let 𝑤ଶ௢(𝑧ଵ) be any Schur stable polynomial of de-

gree 𝑛.
Proceeding similarly as in the case of Lemma 5, we

obtain the following lemma.
Lemma 6. The condition (30) holds if and only if for
all ϐixed 𝑦 ∈ 𝑌 plot of the function

𝜙ଶ(𝑒௝௬ , 𝑒௝ఠ) =
𝑤ଶ(𝑒௝௬ , 𝑒௝ఠ)
𝑤ଶ௢(𝑒௝ఠ)

, 𝜔 ∈ Ω, (42)

does not encircle or cross the origin of the complex
plane, where 𝑤ଶ(𝑒௝௬ , 𝑒௝ఠ) has the form (41) for 𝑧ଵ =
𝑒௝௬ .

The reference polynomial 𝑤ଶ௢(𝑧ଵ) can be chosen
in the form

𝑤ଶ(𝑧ଵ, 1) = det(𝑧ଵ𝐼௡ − 𝑆ଶ(1)), (43)

where 𝑆ଶ(1) = (𝐼௡ − 𝐴ଵ)ିଵ(𝐴଴ + 𝐴ଶ). Schur stability
of (43) is necessary for Schur stability of the complex
polynomial (41) for all 𝜔 ∈ Ω.

If𝑤ଶ௢(𝑧ଵ) = 𝑤ଶ(𝑧ଵ, 1), then

𝜙ଶ(𝑒௝௬ , 𝑒௝ఠ) =
𝑤ଶ(𝑒௝௬ , 𝑒௝ఠ)
𝑤ଶ(𝑒௝௬ , 1)

, 𝜔 ∈ Ω. (44)

Plot of (44) as a function of 𝜔 ∈ Ω with the ϐixed
𝑦 ∈ 𝑌 is a closed curve. It begins with 𝜔 = 0 and ends
with 𝜔 = 2𝜋 in the point 𝜙ଶ(𝑒௝௬ , 1) = 1.

From Theorem 3 and Lemmas 5 and 6 we have the
following theorem.
Theorem 4. Assume that the necessary conditions
(11) and (12) are satisϐied and the polynomials (39)
and (43) are Schur stable. The model (1) is asymptot-
ically stable if and only if the following two conditions
hold:

1) plots of the function (40) do not encircle or cross
the origin of the complex plane for all ϐixed 𝜔 ∈ Ω,

2) plots of the function (44) do not encircle or cross
the origin of the complex plane for all ϐixed 𝑦 ∈ 𝑌.
Applying computational method given in Theorem

4we can take into consideration the following remark.
Remark. Refer to point 1) of Theorem 4, one should
set any ϐixed 𝜔 ∈ Ω, determined with appropriately
small stepΔ𝜔, and drawplots of the function (40) sep-
arately digitizing the range 𝑌 with a sufϐiciently small
step Δ𝑦. For point 2) of Theorem 4 one should set any
ϐixed 𝑦 ∈ 𝑌, determined with appropriately small step
Δ𝑦, and draw plots of the function (44) separately dig-
itizing the range Ω with a sufϐiciently small step Δ𝜔.
Plots should be smooth especially near the origin of
the complexplane so that the important parts havenot
been neglected.
Example 2.Using Theorem 4 check asymptotic stabil-
ity of the model (1) with the matrices (34).

In Example 1 it has been shown that the necessary
conditions (11) and (12) hold.

Computing eigenvalues of the matrices 𝑆ଵ(1) =
(𝐼௡−𝐴ଶ)ିଵ(𝐴଴+𝐴ଵ) and 𝑆ଶ(1) = (𝐼௡−𝐴ଵ)ିଵ(𝐴଴+𝐴ଶ)
we obtain respectively:

𝜆ଵଵ = 0.4201 + 𝑗0.2872,
𝜆ଵଶ = 0.4201 − 𝑗0.2872,

𝜆ଵଷ = −0.6204,
(45)

𝜆ଶଵ = 0.4762 + 𝑗0.2152,
𝜆ଶଶ = 0.4762 − 𝑗0.2152,

𝜆ଶଷ = −0.5703.
(46)

Moduli of all eigenvalues (45) and (46) are less
than one and the reference polynomials (39) and (43)
are Schur stable.

Plots of (40) and (44) are shown in Figures 2 and3,
respectively. The ranges Ω = [0, 2𝜋] and 𝑌 = [0, 2𝜋]
for all plots was digitized with the steps Δ𝑦 = 0.01𝜋
and Δ𝜔 = 0.01𝜋.
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Fig. 2. Plots of (40)
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Fig. 3. Plots of (44)

From Figures 2 and 3 is follows that the plots do
not encircle the origin of the complex plane for all 𝑦 ∈
𝑌 and𝜔 ∈ Ω.Thismeans, according to Theorem4, that
the model (1), (34) is Schur stable. �

Now we consider the 1st order Fornasini-
Marchesini model described by the equation

𝑥(𝑖 + 1, 𝑗 + 1) = 𝑎଴𝑥(𝑖, 𝑗) + 𝑎ଵ𝑥(𝑖 + 1, 𝑗)
+𝑎ଶ𝑥(𝑖, 𝑗 + 1) + 𝑏𝑢(𝑖, 𝑗), (47)

where 𝑎଴ , 𝑎ଵ , 𝑎ଶ and 𝑏 are real coefϐicients.
For the system (47) the necessary conditions (11)

and (12) take the forms

|𝑎ଵ| < 1, |𝑎ଶ| < 1. (48)

The matrix (22) for the system has the form

𝑆ଵ(𝑒௝௬) =
𝑎଴ + 𝑒௝௬𝑎ଵ
𝑒௝௬ − 𝑎ଶ

. (49)

It is easy to check that plot of (49) for 𝑦 ∈ 𝑌 =
[0, 2𝜋] is a circlewith the center at real axis. This circle
crosses real axis in points

𝑆ଵ଴ = 𝑆ଵ(𝑒௝଴) =
𝑎଴ + 𝑎ଵ
1 − 𝑎ଶ

, 𝑆ଵగ = 𝑆ଵ(𝑒௝గ) =
𝑎ଵ − 𝑎଴
1 + 𝑎ଶ

.

Hence, the ϐirst condition (33) holds if and only if

𝜂୫୧୬ = 1 −max {|𝑆ଵ଴| , |𝑆ଵగ|} > 0. (50)

Similarly, we can show that the second condition
(33) holds if and only if

𝜇୫୧୬ = 1 −max {|𝑆ଶ଴| , |𝑆ଶగ|} > 0, (51)

where

𝑆ଶ଴ = 𝑆ଶ(𝑒௝଴) =
𝑎଴ + 𝑎ଶ
1 − 𝑎ଵ

, 𝑆ଶగ = 𝑆ଶ(𝑒௝గ) =
𝑎ଶ − 𝑎଴
1 + 𝑎ଵ

.

From the above andTheorem3wehave the follow-
ing condition.
Lemma 7. The 1st order Fornasini-Marchesini model
(47) is asymptotically stable if and only if the condi-
tions (48) and (50), (51) are satisϐied.

4. Concluding Remarks
Simple necessary conditions (Lemma 1) and two

computational methods for investigation of asymp-
totic stability of the ϐirst Fornasini-Marchesini model
(1) of 2D discrete linear systems have been given.

The ϐirst method (Theorem 3, Lemma 4) require
computation of eigenvalues of complex matrices (22)
and (27). Similarmethods have been applied in [7, 23]
to asymptotic stability analysis of the Roesser model
of 2D systems and in [3] for the Fornasini-Marchesini
and the Roesser type models of 2D continuous-
discrete linear systems.

The second method (Theorem 4) require compu-
tation of values of functions (40) and (44) and there-
fore is simpler from the computation point of view.
Similar methods have been applied in [3], [4], [5] and
[6], respectively, to asymptotic stability analysis of 2D
continuous-discrete linear systems described by the
ϐirst and the second Fornasini-Marchesini type mod-
els and the Roesser type model.

The proposed methods can be applied to the
stability checking of the second Fornasini-Marchesini
model describedby the state equation (1)with𝐴଴ ≡ 0.
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